基于系统动力学的高比例新能源配电网形态演化模型研究

王绪利, 徐冉, 程啸, 张辉, 石玲, 汤奕

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 709-716.

PDF(1976 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1976 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 709-716. DOI: 10.19912/j.0254-0096.tynxb.2024-0700

基于系统动力学的高比例新能源配电网形态演化模型研究

  • 王绪利1, 徐冉1, 程啸1, 张辉1, 石玲2, 汤奕2
作者信息 +

RESEARCH ON MORPHOLOGY EVOLUTION MODEL OF DISTRIBUTION NETWORK WITH HIGH-PROPORTION NEW ENERGY BASED ON SYSTEM DYNAMICS

  • Wang Xuli1, Xu Ran1, Cheng Xiao1, Zhang Hui1, Shi Ling2, Tang Yi2
Author information +
文章历史 +

摘要

首先从政策、市场和技术3个方面分析驱动配电网形态演化的多重因素,然后采用系统动力学方法构建考虑新能源装机容量增长率等多重因素的配电网电源结构演化模型,进而构建考虑网架结构成本和新能源接入能力等多重因素的配电网网架结构演化模型,最后采用东部沿海某省份的相关数据进行仿真分析,验证所提模型的有效性。

Abstract

This paper firstly analyzes the uncertain factors driving the morphology evolution of distribution network from three aspects: policy, market and technology. Then, the system dynamics method is adopted to construct the power source structure evolution model of distribution network which considers multiple factors such as the growth rate of the installed capacity of new energy resources, further, the electric network topology evolution model is constructed with considering multiple factors such as the cost of grid structure and new energy accessing capability of distribution network topology. Finally, the relevant data of a certain province in the eastern coastal region is collected for simulation analysis. The simulation results show that the model proposed in this paper can both well reflect the proportion of new energy in the future distribution network, and predict the evolving direction of the future power grid topology.

关键词

配电网 / 电网拓扑 / 新能源 / 系统分析 / 形态演化

Key words

power distribution networks / electric network topology / new energy / system analysis / morphology evolution

引用本文

导出引用
王绪利, 徐冉, 程啸, 张辉, 石玲, 汤奕. 基于系统动力学的高比例新能源配电网形态演化模型研究[J]. 太阳能学报. 2025, 46(8): 709-716 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0700
Wang Xuli, Xu Ran, Cheng Xiao, Zhang Hui, Shi Ling, Tang Yi. RESEARCH ON MORPHOLOGY EVOLUTION MODEL OF DISTRIBUTION NETWORK WITH HIGH-PROPORTION NEW ENERGY BASED ON SYSTEM DYNAMICS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 709-716 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0700
中图分类号: TM715   

参考文献

[1] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. https://www.gov.cn/gongbao/content/2021/content_5649731.htm.
The State Council. Notice of the State Council on issuing the action plan for carbon peak before2030[EB/OL]. https://www.gov.cn/gongbao/content/2021/content_5649731.htm.
[2] 工业和信息化部, 发展改革委, 生态环境部. 工业和信息化部发展改革委生态环境部关于印发工业领域碳达峰实施方案的通知[EB/OL]. https://www.gov.cn/gongbao/content/2022/content_5717004.htm.
The Ministry of Industry and Information Technology, Development and Reform Commission, Ministry of Ecology and Environment. Notice of the Ministry of Industry and Information Technology, Development and Reform Commission, Ministry of Ecology and Environment on Issuing the Implementation Plan for Carbon Peaking in the Industrial Sector[EB/OL].https://www.gov.cn/gongbao/content/2022/content_5717004.htm.
[3] 张嘉澍, 吕泉, 郭雪丽, 等. 考虑合理弃光的配电网光伏最大接入容量研究[J]. 太阳能学报, 2023, 44(2): 418-426.
ZHANG J S, LYU Q, GUO X L, et al.Research on maximum pv access capacity in distribution network considering proper power curtailment[J]. Acta energiae solaris sinica, 2023, 44(2): 418-426.
[4] 马钊, 周孝信, 尚宇炜, 等. 未来配电系统形态及发展趋势[J]. 中国电机工程学报, 2015, 35(6): 1289-1298.
MA Z, ZHOU X X, SHANG Y W, et al.Form and development trend of future distribution system[J]. Proceedings of the CSEE, 2015, 35(6): 1289-1298.
[5] 刘涤尘, 彭思成, 廖清芬, 等. 面向能源互联网的未来综合配电系统形态展望[J]. 电网技术, 2015, 39(11): 3023-3034.
LIU D C, PENG S C, LIAO Q F, et al.Outlook of future integrated distribution system morphology orienting to energy Internet[J]. Power system technology, 2015, 39(11): 3023-3034.
[6] 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41(9): 12-18.
LU Z X, HUANG H, SHAN B G, et al.Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 12-18.
[7] 王成山, 王瑞, 于浩, 等. 配电网形态演变下的协调规划问题与挑战[J]. 中国电机工程学报, 2020, 40(8): 2385-2396.
WANG C S, WANG R, YU H, et al.Challenges on coordinated planning of smart distribution networks driven by source-network-load evolution[J]. Proceedings of the CSEE, 2020, 40(8): 2385-2396.
[8] 盛万兴, 刘科研, 李昭, 等. 新型配电系统形态演化与安全高效运行方法综述[J]. 高电压技术, 2024, 50(1): 1-18.
SHENG W X, LIU K Y, LI Z, et al.Review of basic theory and methods of morphological evolution and safe & efficient operation of new distribution system[J]. High voltage engineering, 2024, 50(1): 1-18.
[9] 阮前途. 钻石型城市配电网[M]. 北京: 中国电力出版社, 2022.
RUAN Q T.Diamond-type urban distribution network[M]. Beijing: China Electric Power Press, 2022.
[10] 江道灼, 徐宁, 江崇熙, 等. 蜂巢状有源配电网构想、关键技术与展望[J]. 电力系统自动化, 2019, 43(17): 1-11.
JIANG D Z, XU N, JIANG C X, et al.Conception, key technology and prospect of honeycomb-shape active distribution network[J]. Automation of electric power systems, 2019, 43(17): 1-11.
[11] 肖翔匀. 蜂巢状有源配电网控制策略研究[D]. 杭州: 浙江大学, 2021.
XIAO X Y.Control strategy of honeycomb active distribution network[D]. Hangzhou: Zhejiang University, 2021.
[12] 祖国强, 王蕾, 肖峻, 等. 蜂巢配电网的核心特征、关键问题与研究思路[J]. 电力系统自动化, 2022, 46(11): 1-10.
ZU G Q, WANG L, XIAO J, et al.Core features, key issues and research ideas of honeycomb distribution network[J]. Automation of electric power systems, 2022, 46(11): 1-10.
[13] 刘洪, 李其哲, 徐晶, 等. 网孔型中压配电网组网形态、核心特征与研究展望[J]. 电力系统自动化, 2023, 47(16): 181-191.
LIU H, LI Q Z, XU J, et al.Networking morphology, key feature and research prospect of mesh-type medium-voltage distribution network[J]. Automation of electric power systems, 2023, 47(16): 181-191.
[14] KOMIYAMA R, FUJII Y.Assessment of post-Fukushima renewable energy policy in Japan’s nation-wide power grid[J]. Energy policy, 2017, 101: 594-611.
[15] GULAGI A, BOGDANOV D, BREYER C.A cost optimized fully sustainable power system for Southeast Asia and the Pacific rim[J]. Energies, 2017, 10(5): 583.
[16] SADIQA A, GULAGI A, BREYER C.Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050[J]. Energy, 2018, 147: 518-533.
[17] CEBULLA F, NAEGLER T, POHL M.Electrical energy storage in highly renewable European energy systems: capacity requirements, spatial distribution, and storage dispatch[J]. Journal of energy storage, 2017, 14: 211-223.
[18] GILS H C, SCHOLZ Y, PREGGER T, et al.Integrated modelling of variable renewable energy-based power supply in Europe[J]. Energy, 2017, 123: 173-188.
[19] RODRIGUEZ R A, BECKER S, GREINER M.Cost-optimal design of a simplified, highly renewable pan-European electricity system[J]. Energy, 2015, 83: 658-668.
[20] LU B, BLAKERS A, STOCKS M.90-100% renewable electricity for the south west interconnected system of western Australia[J]. Energy, 2017, 122: 663-674.
[21] 季节, 鲁宗相, 梁明亮, 等. 考虑多元互动发展的电网演化路径分析模型及实证分析[J]. 电力建设, 2023, 44(7): 57-69.
JI J, LU Z X, LIANG M L, et al.Analysis model and empirical analysis of power grid evolution path considering multiple interactive developments[J]. Electric power construction, 2023, 44(7): 57-69.
[22] 王传生, 石夫磊, 闫绍山, 等. 系统科学视角下北京市人口演变趋势[J]. 系统科学学报, 2021, 29(3): 131-136.
WANG C S, SHI F L, YAN S S, et al.The trend of population evolution in Beijing from the perspective of system science[J]. Chinese journal of systems science, 2021, 29(3): 131-136.
[23] 王宇奇, 曲云玉. 环境扰动下进口原油供应链网络柔性的系统动力学仿真[J]. 系统管理学报, 2019, 28(5): 983-990.
WANG Y Q, QU Y Y.SD simulation of flexibility of imported crude oil supply chain network under environmental disruption[J]. Journal of systems & management, 2019, 28(5): 983-990.
[24] 胡迪, 高庆水, 张楚, 等. 基于系统动力学的风力机备件需求预测研究[J]. 太阳能学报, 2019, 40(3): 666-672.
HU D, GAO Q S, ZHANG C, et al.Research on demand forecast of spare parts of wind turbine based on system dynamics[J]. Acta energiae solaris sinica, 2019, 40(3): 666-672.
[25] 彭生江, 杨淑霞, 袁铁江. 面向风煤富集区域的风-氢-煤耦合系统演化发展系统动力学[J]. 高电压技术, 2023, 49(8): 3478-3489.
PENG S J, YANG S X, YUAN T J.System dynamics of the evolutionary development of coupled wind-hydrogen-coal system for wind-coal enriched areas[J]. High voltage engineering, 2023, 49(8): 3478-3489.
[26] 赵振宇, 张玉洁. 光储项目成本效益模型及平价上网预测研究[J]. 太阳能学报, 2023, 44(7): 214-220.
ZHAO Z Y, ZHANG Y J.Study on cost-benefit model and grid parity prediction of photovoltaic energy storage power project[J]. Acta energiae solaris sinica, 2023, 44(7): 214-220.
[27] 陈文溆乐, 向月, 彭光博, 等. “双碳” 目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576.
CHEN W S L, XIANG Y, PENG G B, et al. System dynamic modeling and analysis of power system supply side morphological development with dual carbon targets[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1567-1576.
[28] The National Renewable Energy Laboratory.2023 Standard Scenarios Report: a U.S. electricity sector outlook[EB/OL]. https://www.nrel.gov/docs/fy24osti/87724.pdf.

基金

国网安徽省电力有限公司科技项目(B31209220005)

PDF(1976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/