风揭荷载作用下光伏与压型钢板一体化屋面支座节点的抗拔承载力与设计方法

吴函恒, 邢梓瑄, 王涛, 周聪, 王力

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 7-17.

PDF(6133 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6133 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 7-17. DOI: 10.19912/j.0254-0096.tynxb.2024-0707

风揭荷载作用下光伏与压型钢板一体化屋面支座节点的抗拔承载力与设计方法

  • 吴函恒1, 邢梓瑄1, 王涛1, 周聪2, 王力2
作者信息 +

UPLIFT BEARING CAPACITY AND DESIGN APPROACHES OF CLIP CONNECTIONS JOINTS IN PROFILED STEEL SHEET ROOF INTEGRATED SOLAR ARRAYS UNDER WIND LOADS

  • Wu Hanheng1, Xing Zixuan1, Wang Tao1, Zhou Cong2, Wang Li2
Author information +
文章历史 +

摘要

为研究风揭荷载作用下光伏与压型钢板一体化屋面支座连接系统的抗拔承载能力与设计方法,设计支座单节点的加载装置,并通过静力拉伸试验得到支座节点的破坏模式、承载能力以及荷载位移曲线,暗扣支座的抗拔承载力为锁边支座承载力的1.96倍;通过真空吸盘加载,开展“光伏组件-压型钢板-支座系统-檩条”子结构模型足尺试件的抗拔试验,揭示子结构模型的失效机制,分析支座节点承担拉力的分布规律,表明支座节点的拉力分布呈非均匀状态,不均匀系数在1.22~1.31之间;采用结构有限分析软件ABAQUS建立光伏与压型钢板一体化屋面的数值分析模型,进一步研究支座节点承担拉力的分布规律,结合试验与数值模拟分析结果,建议不均匀系数取为1.3;基于容许应力法,提出光伏与压型钢板一体化屋面支座节点的设计方法。

Abstract

In order to study the uplift bearing capacity and design approaches under the uplift wind pressure of the clip connections of the profiled steel sheet roofs integrated solar arrays, the clip loading device is designed in this paper. Static tensile tests are performed to obtain the failure mode, bearing capacity and load-displacement curves of the clip connections. The pulling capacity of the button clips is 1.96 times that of the seam clips. The substructure model uplift tests of photovoltaic module-profiled steel sheet-clip connections-purlins loading by vacuum suckers is conducted to reveal the failure mode of substructure and analyze the tensile forces of clips and their distributions. It is found that the distribution of clip tension is in a non-uniform state, with the non-uniformity coefficient ranging from 1.22 to 1.31. A numerical analysis model for the profiled steel sheet roof integrated solar arrays is established using the structural finite element analysis software ABAQUS. The distribution of clips tension is investigated further. Combine the results of experiments and numerical simulation analysis, it is recommended that the non-uniformity coefficient is taken as 1.3. Referring to allowable stress method, the design approach of the clip connections of the profiled steel sheet roof integrated solar arrays has been proposed.

关键词

光伏组件 / 钢板 / 风效应 / 支座节点 / 设计方法

Key words

photovoltaic module / steel sheet / wind effects / clip connections joint / design approach

引用本文

导出引用
吴函恒, 邢梓瑄, 王涛, 周聪, 王力. 风揭荷载作用下光伏与压型钢板一体化屋面支座节点的抗拔承载力与设计方法[J]. 太阳能学报. 2025, 46(8): 7-17 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0707
Wu Hanheng, Xing Zixuan, Wang Tao, Zhou Cong, Wang Li. UPLIFT BEARING CAPACITY AND DESIGN APPROACHES OF CLIP CONNECTIONS JOINTS IN PROFILED STEEL SHEET ROOF INTEGRATED SOLAR ARRAYS UNDER WIND LOADS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 7-17 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0707
中图分类号: TU391   

参考文献

[1] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[2] 郭涛, 杨渊茗, 孙震, 等. 光伏组件柔性拖曳结构与传统刚性结构风振响应对比[J]. 太阳能学报, 2024, 45(10): 317-325.
GUO T, YANG Y M, SUN Z, et al.Comparison of wind vibration response of flexible dragging support structure and traditional rigid support structure of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(10): 317-325.
[3] 姚磊, 付豪, 马科飞, 等. 高速公路边坡光伏组件表面灰尘粘附性能研究[J]. 太阳能学报, 2024, 45(4): 460-467.
YAO L, FU H, MA K F, et al.Performance study of dust adhesion of PV module surfaces on highway slope[J]. Acta energiae solaris sinica, 2024, 45(4): 460-467.
[4] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[5] KOPP G A.Wind loads on low-profile, tilted, solar arrays placed on large, flat, low-rise building roofs[J]. Journal of structural engineering, 2014, 140(2): 04013057.
[6] SONG X G, CHEN L, ZHANG Q L. Bearing capacity experiments and design suggestions on new roof system of profiled steel sheet[J]. Advanced materials research, 2010, 163/164/165/166/167: 161-164.
[7] 王海涛, 王静峰. 大跨度空间结构金属屋面板抗风揭性能试验研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(1): 115-121.
WANG H T, WANG J F.Experimental study of wind resistance of metal roofing panels of large-span spatial structure[J]. Journal of Hefei University of Technology (natural science), 2016, 39(1): 115-121.
[8] 许秋华, 万恬, 刘凯. 直立锁缝金属屋面加强抗风揭能力的优化设计[J]. 工程力学, 2020, 37(7): 17-26, 167.
XU Q H, WAN T, LIU K.Optimal design of strengthening wind exposure resistance of vertical whipstitch mental roofing board[J]. Engineering mechanics, 2020, 37(7): 17-26, 167.
[9] 孙雪娇, 刘宝昌, 冯笑非. 长春龙嘉国际机场金属屋面系统抗风承载力的试验研究及有限元分析[J]. 建筑结构, 2022, 52(增刊2): 1960-1965.
SUN X J, LIU B C, FENG X F.Experimental study and finite element analysis of wind resistance capacity of metal roof system in Changchun Longjia International Airport[J]. Building structure, 2022, 52(S2): 1960-1965.
[10] HABTE F, ASGHARI M M, GAN CHOWDHURY A, et al.Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading[J]. Engineering structures, 2015, 105: 231-248.
[11] HENDERSON D, WILLIAMS C, GAVANSKI E, et al.Failure mechanisms of roof sheathing under fluctuating wind loads[J]. Journal of wind engineering and industrial aerodynamics, 2013, 114: 27-37.
[12] 于敬海, 李路川, 盖力, 等. 直立锁边金属屋面系统抗风承载力节点试验研究[J]. 建筑结构, 2015, 45(17): 83-86.
YU J H, LI L C, GAI L, et al.Node test study on wind resistance bearing capacity of the standing seam metal roof system[J]. Building structure, 2015, 45(17): 83-86.
[13] 于敬海, 赵彧洋, 蒋智宇, 等. 直立锁边金属屋面系统关键连接节点抗拉承载力试验[J]. 建筑科学与工程学报, 2019, 36(1): 112-119.
YU J H, ZHAO Y Y, JIANG Z Y, et al.Tension bearing capacity of key connections of standing seam metal roofing system[J]. Journal of architecture and civil engineering, 2019, 36(1): 112-119.
[14] 张耕. 大型公共建筑直立锁边金属屋面抗风揭加固方法探析[J]. 工程建设与设计, 2017(21): 28-32.
ZHANG G.Analysis of the wind uplift strengthening methods of the standing seam metal roof in large-scale public buildings[J]. Construction & design for engineering, 2017(21): 28-32.
[15] WU T, SUN Y, CAO Z G, et al.Study on the wind uplift failure mechanism of standing seam roof system for performance-based design[J]. Engineering structures, 2020, 225: 111264.
[16] SUN Y, WU T, CAO Z G.Wind vulnerability analysis of standing seam roof system with consideration of multistage performance levels[J]. Thin-walled structures, 2021, 165: 107942.
[17] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
SUN Y, WU T, WU Y.Parameter study on wind resistant performance of standing seam roof system with anti-wind clip[J]. Engineering mechanics, 2020, 37(2): 183-191.
[18] 孙瑛, 武涛, 武岳. 直立锁边屋面系统风揭破坏全过程试验研究[J]. 建筑结构学报, 2022, 43(12): 41-48, 69.
SUN Y, WU T, WU Y.Experimental study on wind uplift failure process of standing seam roof system[J]. Journal of building structures, 2022, 43(12): 41-48, 69.
[19] 姚志东, 卢炜, 刘明奇. 基于风荷载数值模拟和抗风揭试验相结合的既有金属屋面抗风性能评估方法[J]. 建筑结构, 2021, 51(S1):1738-1741.
YAO Z D, LU W, LIU M Q.Wind resistance performance evaluation method of existing metal roof based on the combination of wind load numerical simulation and wind uplift experiment[J]. Building structure, 2021, 51(S1):1738-1741.
[20] 崔忠乾. 直立锁边金属屋面抗风揭性能研究[D]. 北京: 中国建筑科学研究院, 2019.
CUI Z Q.Study on wind-resistant and uncovering performance of vertical metal roof with locking edge[D]. Beijing: China Academy of Building Reaserch, 2019.
[21] 秦国鹏, 张晓旭, 孙超. 铝合金屋面系统抗风揭性能试验研究及数值分析[J]. 工业建筑, 2016, 46(10): 169-173.
QIN G P, ZHANG X X, SUN C.Experimental research and numerical analysis of an aluminum-alloy roof system under wind uplift load[J]. Industrial construction, 2016, 46(10): 169-173.
[22] 张士翔, 赖燕德, 李庆祥. 直立锁边金属屋面系统风吸破坏机理研究[J]. 钢结构(中英文), 2020(5): 10-18.
ZHANG S X, LAI Y D, LI Q X.Investigation on failure mechanism of the standing seam metal roof system[J]. Steel construction (Chinese & English), 2020(5): 10-18.
[23] GB/T 228.1—2021, 金属材料拉伸试验第1部分: 室温试验方法[S].
GB/T 228.1—2021, Standardization administration of the people’s republic of china. metallic materials: tensile testing: part 1: method of test at room temperature[S].
[24] GB 51022—2015, 门式刚架轻型房屋钢结构技术规范[S].
GB 51022—2015, Technical specification for steel structure of light-weight buildings with gabled frames[S].
[25] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].

基金

陕西省自然科学基金(2023-JC-YB-295); 中央高校基本科研业务费(300102282204; 300102282718); 隆基绿能科技股份有限公司科技创新项目(2309-0848-A437)

PDF(6133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/