海上风力机吸力式桩桶基础得到了广泛应用。首先依据实测试桩资料对有限元软件ABAQUS进行模型的有效性验证;然后建立砂土中4~9 m桩径的吸力式桩桶基础的有限元模型,分析其在不同水平荷载作用下的桩身弯矩和位移响应;最后在双曲线p-y曲线模型的基础之上,考虑土体深度和桩径尺寸的影响对初始地基反力模量和极限土反力计算方法进行修正,提出合适的p-y曲线模型。结果表明,砂土中的吸力式桩桶基础在水平荷载作用下主要呈转动模式,且伴随有少许的平动,桩身弯矩值沿土深方向先增大后减小,且水平荷载大小的变化对桩身弯矩最大值所在位置基本无影响,API法p-y曲线高估了初始地基反力模量,低估了极限土反力,不适用于对其进行计算分析,而修正p-y曲线模型与数模结果之间的吻合性较好。
Abstract
Offshore wind turbine suction pile foundation has been widely used. As known as suction bucket foundations, they are large concrete or steel barrel structures, closed at the top, open at the bottom, and equipped with a pumping/drainage port at the top. Firstly, the validity of the model is verified by the finite element software ABAQUS based on the data of actual test piles; then the finite element model of suction pile barrel foundation with pile diameter of 4-9 m in sandy soil is established to analyze the bending moments and displacement responses of the pile body under different horizontal loads; finally, on the basis of the hyperbolic p-y curve model, the initial foundation reaction modulus and ultimate soil reaction force calculation method are corrected by considering the effects of soil depth and pile diameter size, and a suitable p-y curve model is proposed. The results show that the suction pile barrel foundation in sandy soil mainly shows rotation mode under horizontal load, and accompanied by a little bit of translation, the value of the pile bending moment increases and then decreases along the soil depth direction, and the change of the horizontal load size basically has no effect on the location of the maximum value of the pile bending moment, the API method p-y curve overestimates the initial foundation reaction modulus and underestimates the ultimate soil reaction force, which is not suitable for its calculation and analysis, while the agreement between the modified p-y curve model and the results of the numerical modeling is better.
关键词
海上风力机 /
桩基础 /
ABAQUS /
砂土 /
p-y曲线 /
桩土相互作用
Key words
offshore wind turbines /
pile foundations /
ABAQUS /
sand /
p-y curve /
pile-soil interaction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王欢. 砂土海床大直径单桩基础和桶形基础水平受荷特性研究[D]. 杭州: 浙江大学, 2020.
WANG H.Lateral behaviour of offshore monopile and bucket foundations in sand[D]. Hangzhou: Zhejiang University, 2020.
[2] 蒋建平, 孙宏涛, 高嘉若. V-H荷载作用下海洋平台吸力式桩桶桩土承载特性研究[J]. 海洋工程, 2023, 41(6): 1-10.
JIANG J P, SUN H T, GAO J R.Study on bearing characteristics of suction pile and soil of offshore platform under V-H load[J]. The ocean engineering, 2023, 41(6): 1-10.
[3] 李炀, 吴曙光, 张四平, 等. 水平受荷桩桩身响应的线性方程解及应用分析[J]. 岩土工程学报, 2020, 42(S1): 70-74.
LI Y, WU S G, ZHANG S P, et al.Linear equation solution of horizontally loaded piles and its application[J]. Chinese journal of geotechnical engineering, 2020, 42(S1): 70-74.
[4] KLAR A, RANDOLPH M F.Upper-bound and load-displacement solutions for laterally loaded piles in clays based on energy minimisation[J]. Géotechnique, 2008, 58(10): 815-820.
[5] YANG X, ZENG X W, WANG X F.Lateral-moment loading capacity and bearing behavior of suction bucket foundations for offshore wind turbines in sand[J]. International journal of geomechanics, 2018, 18(11): 04018152.
[6] 胡中波, 翟恩地, 罗仑博, 等. 基于静载试验的海上风电钢管桩砂土p-y曲线研究[J]. 太阳能学报, 2019, 40(12): 3571-3577.
HU Z B, ZHAI E D, LUO L B, et al.Study on p-y curves of steel pipe piles for offshore wind farms in sand based on in-situ tests[J]. Acta energiae solaris sinica, 2019, 40(12): 3571-3577.
[7] LI L C, LIU X, LIU H, et al.Experimental and numerical study on the static lateral performance of monopile and hybrid pile foundation[J]. Ocean engineering, 2022, 255: 111461.
[8] 袁龙锦. 长期水平荷载作用下吸力式沉箱基础承载性能试验研究[D]. 南京: 东南大学, 2015.
YUAN L J.Experimental study on the long-term horizontal bearing performance of suction caisson foundation[D]. Nanjing: Southeast University, 2015.
[9] 张杰峰, 姜萌. p-y曲线法和m法在桶基平台计算中的对比研究[J]. 中国水运(下半月), 2014(6): 103-106.
ZHANG J F, JIANG M.Comparative study of p-y curve method and m method in barrel-based platform calculation[J]. China water transport, 2014(6): 103-106.
[10] 戴国亮, 朱文波, 袁龙锦, 等. 吸力式沉箱基础考虑土体流变效应的p-y曲线法[J]. 东南大学学报(自然科学版), 2017, 47(4): 806-811.
DAI G L, ZHU W B, YUAN L J, et al.A p-y curve method for suction caisson foundation considering soil rheological effect[J]. Journal of Southeast University (natural science edition), 2017, 47(4): 806-811.
[11] AMAR B D.Numerical investigation of large-diameter monopiles in sands: critical review and evaluation of both API and newly proposed p-y curves[J]. International journal of geomechanics, 2018, 18(11): 04018141.
[12] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815.
ZHU B, XIONG G, LIU J C, et al.Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese journal of geotechnical engineering, 2013, 35(10): 1807-1815.
[13] LESNY K, WIEMANN J.Finite-element-modelling of large diameter monopiles for offshore wind energy converters[C]//Proceedings of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. Virginia, USA, 2006: 1-6.
[14] 南博文. 基于砂土刚度衰减模型的大直径桩修正p-y曲线法研究[D]. 杭州: 浙江大学, 2019.
NAN B W.Studies on modified p-y curves method of monopile based on the degradation stiffness model of sand[D]. Hangzhou: Zhejiang University, 2019.
[15] 刘红军, 尹燕京, 常季青. 水平荷载下海上风机单桩基础桩土相互作用研究[J]. 中国海洋大学学报(自然科学版), 2016, 46(3): 113-120.
LIU H J, YIN Y J, CHANG J Q.Research on the pile-soil interaction of monopile foundation under horizontal load for offshore wind turbine[J]. Periodical of Ocean University of China, 2016, 46(3): 113-120.
[16] American Petroleum Institute(API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington, D C: American Petroleum Institute Publishing Services, 2005.
[17] GEORGIADIS M, ANAGNOSTOPOULOS C, SAFLEKOU S.Centrifugal testing of laterally loaded piles in sand[J]. Canadian geotechnical journal, 1992, 29(2): 208-216.
[18] TAK KIM B, KIM N K, JIN LEE W, et al.Experimental load-transfer curves of laterally loaded piles in nak-Dong river sand[J]. Journal of geotechnical and geoenvironmental engineering, 2004, 130(4): 416-425.
[19] KLINKVORT R T, HEDEDAL O.Effect of load eccentricity and stress level on monopile support for offshore wind turbines[J]. Canadian geotechnical journal, 2014, 51(9): 966-974.
[20] 孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正p-y曲线模型[J]. 工程力学, 2021, 38(4): 44-53.
SUN Y L, XU C S, DU X L, et al.A modified p-y curve model of large-monopiles of offshore wind power plants[J]. Engineering mechanics, 2021, 38(4): 44-53.
[21] FLEMING K, WELTMAN A, RANDOLPH M, et al.Piling engineering[M]. 3rd Edition. London: CRC Press, 2008.
[22] GUO W D.On limiting force profile, slip depth and response of lateral piles[J]. Computers and geotechnics, 2006, 33(1): 47-67.
[23] 张小玲, 周锐, 许成顺. 海上风电基础修正p-y曲线模型研究[J]. 太阳能学报, 2023, 44(12): 290-297.
ZHANG X L, ZHOU R, XU C S.Study on corrected p-y curve model of pile foundation of offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(12): 290-297.
[24] 刘畅博, 胡中波, 李阔, 等. 砂土地基海上风电大直径单桩基础的p-y曲线研究[J]. 太阳能学报, 2024, 45(7): 704-711.
LIU C B, HU Z B, LI K, et al.Study of p-y curves of large-monopiles for offshore wind power in sand[J]. Acta energiae solaris sinica, 2024, 45(7): 704-711.
[25] 薛佩佩, 王栋, 郑敬宾, 等. 水平荷载作用下砂土中非柔性桩的p-y曲线修正[J]. 中国海洋大学学报(自然科学版), 2023, 53(2): 134-140.
XUE P P, WANG D, ZHENG J B, et al.Modified p-y curve for non-flexible piles of horizontal loading in sand[J]. Periodical of Ocean University of China, 2023, 53(2): 134-140.
[26] 马美玲, 李立辰, 吴文兵, 等. 基于现场试验的海上风电大直径钢管桩p-y曲线特性分析[J]. 海洋工程, 2024, 42(5): 44-53.
MA M L, LI L C, WU W B, et al.Characterization of p-y curve for a large-diameter steel pipe pile based on field test[J]. The ocean engineering, 2024, 42(5): 44-53.
基金
国家自然科学基金面上项目(41372319)