针对蜣螂优化算法因陷入局部最优值而收敛精度低的问题,提出融合遗传算法改进的蜣螂优化算法,即遗传-蜣螂优化算法(GADBO),同时结合初始化种群和变异扰动的策略,改善局部最优,提高全局搜索能力。通过10个基准函数的测试和对比,验证改进GADBO算法的有效性,且GADBO比其他群智能优化算法寻优精度更高。GADBO算法应用于长短期记忆神经网络(LSTM)超参数优化,并建立光伏发电功率预测模型。仿真结果表明,以GADBO算法优化而建立的LSTM预测模型拟合系数为98.45%,平均绝对误差和平均绝对百分比误差也最小,模型的准确度和精度都得到提高,验证GADBO在神经网络优化上的适用性和效果。
Abstract
A genetic algorithm-dung beetle optimization (GADBO) is proposed to address the problem of low convergence accuracy of the dung beetle optimization algorithm due to being trapped in local optima. This improved algorithm combines the strategies of initial population and mutation disturbance to escape local optima and enhance global search capabilities. Through the testing and comparison of 10 benchmark functions, the effectiveness of the GADBO algorithm improvement has been verified, and GADBO has higher optimization accuracy than other swarm intelligence optimization algorithms. The GADBO algorithm is applied to the hyperparameter optimization of long short-term memory (LSTM) neural networks, and a photovoltaic power generation prediction model is established. The simulation results show that the LSTM prediction model optimized by the GADBO algorithm has a fitting coefficient of 98.45%, and the average absolute error and average absolute percentage error are also minimized. The accuracy and precision of the model have been improved, verifying the applicability and effectiveness of GADBO in neural network optimization.
关键词
遗传算法 /
蜣螂优化算法 /
光伏 /
发电 /
预测 /
长短期记忆神经网络
Key words
genetic algorithms /
dung beetle optimization /
photovoltaic /
power generation /
forecasting /
long short-term memory
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.
LI Y L, WANG S Q, CHEN Q R, et al.Comparative study of several new swarm intelligence optimization algorithms[J]. Computer engineering and applications, 2020, 56(22): 1-12.
[2] 袁建华, 谢斌斌, 何宝林, 等. 基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法[J]. 太阳能学报, 2022, 43(8): 58-66.
YUAN J H, XIE B B, HE B L, et al.Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP[J]. Acta energiae solaris sinica, 2022, 43(8): 58-66.
[3] 文爽, 马逸骋, 孙志强. 基于GWO-EEMD-BP神经网络的光伏发电功率短期预测[J]. 中南大学学报(自然科学版), 2022, 53(12): 4799-4808.
WEN S, MA Y C, SUN Z Q.Short-term prediction of photovoltaic power based on GWO-EEMD-BP[J]. Journal of Central South University (science and technology), 2022, 53(12): 4799-4808.
[4] 王晓霞, 俞敏, 冀明, 等. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报, 2023, 44(6): 275-283.
WANG X X, YU M, JI M, et al.Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J]. Acta energiae solaris sinica, 2023, 44(6): 275-283.
[5] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[6] 雍龙泉, 黎延海, 贾伟. 正弦余弦算法的研究及应用综述[J]. 计算机工程与应用, 2020, 56(14): 26-34.
YONG L Q, LI Y H, JIA W.Literature survey on research and application of sine cosine algorithm[J]. Computer engineering and applications, 2020, 56(14): 26-34.
[7] 彭晓波, 桂卫华, 黄志武, 等. GAPSO: 一种高效的遗传粒子混合算法及其应用[J]. 系统仿真学报, 2008, 20(18): 5025-5027, 5031.
PENG X B, GUI W H, HUANG Z W, et al.GAPSO: effective genetic particle swarm algorithm and its application[J]. Journal of system simulation, 2008, 20(18): 5025-5027, 5031.
[8] ZHANG X Q, ZHANG Y Y, MING Z F.Improved dynamic grey wolf optimizer[J]. Frontiers of information technology & electronic engineering, 2021, 22(6): 877-890.
[9] XUE J K, SHEN B.Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The journal of supercomputing, 2023, 79(7): 7305-7336.
[10] 卢苡锋, 王霄. 基于二次分解和IDBO-DABiLSTM的短期风电功率预测模型[J]. 计算机工程, 2024, 50(12): 99-109.
LU Y F, WANG X.Short-term wind power prediction model based on secondary decomposition and IDBO-DABiLSTM[J]. Computer engineering, 2024, 50(12): 99-109.
[11] 李斌, 高鹏, 郭自强. 改进蜣螂算法优化LSTM的光伏阵列故障诊断[J]. 电力系统及其自动化学报, 2024, 36(8): 70-78.
LI B, GAO P, GUO Z Q.Improved dung beetle optimizer to optimize LSTM for photovoltaic array fault diagnosis[J]. Proceedings of the CSU-EPSA, 2024, 36(8): 70-78.
[12] 侯帅虎, 赵辉, 岳有军, 等. 基于IDBO-IP&O算法局部遮阴下光伏系统MPPT跟踪研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 146-153.
HOU S H,ZHAO H, YUE Y J, et al.Research on MPPT tracking of photovoltaic systems under local shading based on IDBO-IP&O algorithm[J]. Complex systems and complexity science,2025, 22(1): 146-153.
[13] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X.Multi-strategy improved dung beetle optimizer and its application[J]. Journal of frontiers of computer science and technology, 2024, 18(4): 930-946.
[14] NIKBAKHT S, ANITESCU C, RABCZUK T.Optimizing the neural network hyperparameters utilizing genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A, 2021, 22(6): 407-426.
[15] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110.
PAN J C, LI S B, ZHOU P, et al.Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer engineering and applications, 2023, 59(22): 92-110.
[16] 王乐遥, 顾磊. 多策略融合改进的蜣螂优化算法[J]. 计算机系统应用, 2024, 33(2): 224-231.
WANG L Y, GU L.Improved dung beetle optimization algorithm with multi-strategy[J]. Computer systems and applications, 2024, 33(2): 224-231.
[17] SAITO A, YAMAGUCHI A.Pseudorandom number generation using chaotic true orbits of the Bernoulli map[J]. Chaos, 2016, 26(6): 063122.
基金
广东省普通高校特色创新项目(2022KTSCX333); 2024年中山市教育科研青年课题(C2024182); 2023年中山火炬职业技术学院校级课程思政示范课程“光伏发电应用技术”(2023KCSZ15)