考虑多时间尺度特性的锂离子电池建模与参数辨识

夏永凯, 夏向阳, 鄢笠, 谭欣欣, 黄如, 邓化龙

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 263-272.

PDF(6113 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6113 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 263-272. DOI: 10.19912/j.0254-0096.tynxb.2024-0718

考虑多时间尺度特性的锂离子电池建模与参数辨识

  • 夏永凯1, 夏向阳1, 鄢笠2, 谭欣欣3, 黄如4, 邓化龙4
作者信息 +

MODELING AND PARAMETER IDENTIFICATION OF LITHIUM-ION BATTERIES CONSIDERING MULTI-TIME SCALE CHARACTERISTICS

  • Xia Yongkai1, Xia Xiangyang1, Yan Li2, Tan Xinxin3, Huang Ru4, Deng Hualong4
Author information +
文章历史 +

摘要

针对锂离子电池采用传统参数辨识方法会导致辨识结果精度低、工况适应性差等问题,根据锂离子电池在动力学特性上表现出的不同时间尺度特性对二阶RC等效电路模型进行重构,并将其分解为快动态(FD)部分与慢动态(SD)部分,采用改进的遗忘因子递推最小二乘方法(IFRLS)和自适应卡尔曼滤波算法(AKF)对模型的FD与SD部分进行区分辨识,避免模型参数之间的相互干扰,最后在多种工况下将所提方法与传统的参数辨识方法进行对比分析,结果证明所提方法的有效性与准确性对于储能系统的实际应用有一定的工程借鉴价值。

Abstract

The traditional parameter identification methods for lithium-ion batteries will lead to problems such as low accuracy of identification results and poor adaptability to working conditions, and sudden error and even distortion of output voltage curve due to sudden parameter changes in low SOC region. In this paper, the second-order RC equivalent circuit model is reconstructed according to the different time-scale characteristics of lithium-ion battery dynamics, and it is decomposed into fast dynamic (FD) part and slow dynamic (SD) part. The FD part and SD part of the model are distinguished by the improved IFRLS and the adaptive Kalman filter algorithm (AKF) to avoid the mutual interference between the model parameters. Finally, the proposed method is compared with the traditional parameter identification methods under various working conditions, and the results prove the effectiveness and accuracy of the proposed parameter identification method, which has certain engineering reference value for the practical application of energy storage system.

关键词

锂离子电池 / 等效电路模型 / 参数辨识 / 时间尺度 / 递推最小二乘 / 卡尔曼滤波

Key words

lithium-ion battery / equivalent circuit model / parameter identification / time scales / recursive least squares / Kalman filtering

引用本文

导出引用
夏永凯, 夏向阳, 鄢笠, 谭欣欣, 黄如, 邓化龙. 考虑多时间尺度特性的锂离子电池建模与参数辨识[J]. 太阳能学报. 2025, 46(9): 263-272 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0718
Xia Yongkai, Xia Xiangyang, Yan Li, Tan Xinxin, Huang Ru, Deng Hualong. MODELING AND PARAMETER IDENTIFICATION OF LITHIUM-ION BATTERIES CONSIDERING MULTI-TIME SCALE CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 263-272 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0718
中图分类号: TM912   

参考文献

[1] 李练兵, 朱乐, 李思佳, 等. 基于差分电压和ICS-Elman神经网络的锂离子电池剩余使用寿命预测方法[J]. 太阳能学报, 2023, 44(12): 433-443.
LI L B, ZHU L, LI S J, et al.Remaining useful life prediction of lithium-ion batteries based on differential voltage and ICS-Elman neural networks[J]. Acta energiae solaris sinica, 2023, 44(12): 433-443.
[2] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[3] 刘玉洁, 赵巍, 孙孝峰, 等. 储能系统锂离子电池附加受控电压源等效电路模型研究[J]. 太阳能学报, 2023, 44(8): 1-9.
LIU Y J, ZHAO W, SUN X F, et al.Equivalent circuit model of lithium-ion batteries attached controlled voltage source in energy storage system[J]. Acta energiae solaris sinica, 2023, 44(8): 1-9.
[4] 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387.
HUANG K, GUO Y F, LI Z G.High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387.
[5] 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93.
ZHU R, DUAN B, WEN F Z, et al.Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of mechanical engineering, 2019, 55(20): 85-93.
[6] YANG Z, WANG X M.An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries[J]. Journal of energy storage, 2023, 59: 106462.
[7] DAI H F, XU T J, ZHU L T, et al.Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales[J]. Applied energy, 2016, 184: 119-131.
[8] HU Y R, WANG Y Y.Two time-scaled battery model identification with application to battery state estimation[J]. IEEE transactions on control systems technology, 2015, 23(3): 1180-1188.
[9] ZHANG C, ALLAFI W, DINH Q, et al.Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688.
[10] 罗勇, 祁朋伟, 阚英哲, 等. 基于模拟退火算法的锂电池模型参数辨识[J]. 汽车工程, 2018, 40(12): 1418-1425.
LUO Y, QI P W, KAN Y Z, et al.Parameter identification of lithium battery model based on simulated annealing algorithm[J]. Automotive engineering, 2018, 40(12): 1418-1425.
[11] 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175.
WU C L, HU W B, MENG J H, et al.State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175.
[12] 项宇, 刘春光, 李嘉麒. 基于卡尔曼滤波的锂离子电池模型参数辨识[J]. 兵器装备工程学报, 2016, 37(10): 147-151.
XIANG Y, LIU C G, LI J Q.Model parameters estimation of lithium batteries based on Kalman filtering[J]. Journal of ordnance equipment engineering, 2016, 37(10): 147-151.
[13] ZHENG F D, XING Y J, JIANG J C, et al.Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied energy, 2016, 183: 513-525.
[14] 谈发明, 赵俊杰, 李秋烨. 基于简化滞回OCV模型的锂电池SOC自适应估计策略[J]. 中国电机工程学报, 2021, 41(2): 703-715.
TAN F M, ZHAO J J, LI Q Y.Adaptive SOC estimation strategy for lithium battery based on simplified hysteresis OCV model[J]. Proceedings of the CSEE, 2021, 41(2): 703-715.
[15] 范兴明, 封浩, 张鑫. 最小二乘算法优化及其在锂离子电池参数辨识中的应用[J]. 电工技术学报, 2024, 39(5): 1577-1588.
FAN X M, FENG H, ZHANG X.Optimization of least squares method and its application in parameter identification of lithium-ion battery model[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1577-1588.
[16] REN B Y, XIE C X, SUN X D, et al.Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm[J]. IET power electronics, 2020, 13(12): 2531-2537.
[17] 程燕, 王海峰, 王学运, 等. 复杂环境下基于自适应卡尔曼滤波的时间比对跟踪算法[J]. 电子与信息学报, 2023, 45(11): 4110-4116.
CHENG Y, WANG H F, WANG X Y, et al.A time transfer tracking loop based on adaptive Kalman filter in complex conditions[J]. Journal of electronics & information technology, 2023, 45(11): 4110-4116.

基金

国家自然科学基金(51977014)

PDF(6113 KB)

Accesses

Citation

Detail

段落导航
相关文章

/