在质子交换膜燃料电池(PEMFC)装配过程中,装配力会导致气体扩散层(GDL)出现压缩变形。为确定最佳装配力以提高燃料电池性能,通过试验和数值模拟方法,对PEMFC在不同装配力下GDL变形、电流密度分布和氧浓度分布进行分析。并通过综合考虑压降、功率密度和电流密度分布等多参数对PEMFC性能进行综合评价。研究结果表明:装配力导致GDL在肋下发生非线性应力-应变压缩,其中在2.0 MPa装配力下,压缩率达到61%。在0.95 A/cm2电流密度时,1.0 MPa下PEMFC的功率密度相比0.5 MPa提高装配力4.57%。而且根据熵权法评价发现1.0 MPa装配力下PEMFC综合性能最佳。
Abstract
The compression deformation of the GDL is caused by assembly force. To determine the optimal assembly force for improving fuel cell performance, the GDL deformation, current density distribution, and oxygen concentration distribution of the PEMFC under different assembly forces were analyzed based on experimental and numerical simulation methods. The PEMFC performance was comprehensively evaluated by considering multiple parameters such as pressure drop, power density, and current density distribution. The results show that the assembly force resulted in nonlinear stress-strain compression of the GDL under the rib, with compression reaching 61 % at the assembly force of 2.0 MPa. The power density of PEMFC at 1.0 MPa increased by 4.57 % compared to the results of 0.5 MPa under 0.95 A cm-2. Moreover, the overall performance of PEMFC at 1.0 MPa was the best by using the entropy weighting method.
关键词
质子交换膜燃料电池 /
装配 /
接触电阻 /
压缩变形 /
最佳装配力 /
综合评价
Key words
proton exchange membrane fuel cells /
assembly /
contact resistance /
compressive deformation /
optimal assembly force /
synthesized assessment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵洪山, 潘思潮, 吴雨晨, 等. 基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究[J]. 太阳能学报, 2024, 45(6): 92-101.
ZHAO H S, PAN S C, WU Y C, et al.Study on joint control of pump and radiator in PEMFC based on deep deterministic policy gradient[J]. Acta energiae solaris sinica, 2024, 45(6): 92-101.
[2] 陈永辉, 苏建徽, 解宝, 等. 基于HHO-FA的PEMFC电堆辨识建模[J]. 太阳能学报, 2024, 45(3): 282-289.
CHEN Y H, SU J H, XIE B, et al.Identification modeling of PEMFC stack based on HHO-FA[J]. Acta energiae solaris sinica, 2024, 45(3): 282-289.
[3] 陈宇轩, 陈涛, 刘士华, 等. 装配扭矩对PEMFC性能的影响[J]. 电池, 2020, 50(3): 215-219.
CHEN Y X, CHEN T, LIU S H, et al.Effect of assembly torque on the performance of PEMFC[J]. Battery bimonthly, 2020, 50(3): 215-219.
[4] 周怡博, 王建建. 装配压力对燃料电池扩散层影响的研究[J]. 系统仿真学报, 2016, 28(4): 991-996.
ZHOU Y B, WANG J J.Effect of assembly force on gas diffusion layer for proton exchange membrane fuel cell[J]. Journal of system simulation, 2016, 28(4): 991-996.
[5] JING G X, HU C B, QIN Y Z, et al.Complex mechanisms of PEMFC performance variations influenced by both structural deformation and contact resistance under the clamping force[J]. International journal of hydrogen energy, 2024, 58: 137-148.
[6] MOVAHEDI M, RAMIAR A, RANJBER A A.3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field[J]. Energy, 2018, 142: 617-632.
[7] JIANG W, ZHANG K, HUANG X, et al.Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell[J]. Applied energy, 2024, 353: 122021.
[8] 曹爱红, 王来华, 代世勋. 基于装配力的燃料电池性能数值解析[J]. 电源技术, 2021, 45(7): 844-847, 801.
CAO A H, WANG L H, DAI S X.Study on performance of fuel cell based on assembly force[J]. Chinese journal of power sources, 2021, 45(7): 844-847, 801.
[9] 蔡永华, 胡健平, 罗子贤. PEMFC船形堵块阴极流场的性能[J]. 电池, 2024, 54(1): 14-18.
CAI Y H, HU J P, LUO Z X.The performance of cathode flow field with ship-like block in PEMFC[J]. Battery bimonthly, 2024, 54(1): 14-18.
[10] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[11] JIAO K, PARK J, LI X G.Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell[J]. Applied energy, 2010, 87(9): 2770-2777.
[12] ZAMEL N, LI X G, SHEN J, et al.Estimating effective thermal conductivity in carbon paper diffusion media[J]. Chemical engineering science, 2010, 65(13): 3994-4006.
[13] TAMAYOL A, MCGREGOR F, BAHRAMI M.Single phase through-plane permeability of carbon paper gas diffusion layers[J]. Journal of power sources, 2012, 204: 94-99.
[14] ZAMEL N, LI X G, SHEN J.Numerical estimation of the effective electrical conductivity in carbon paper diffusion media[J]. Applied energy, 2012, 93: 39-44.
[15] RADHAKRISHNAN V, HARIDOSS P.Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design[J]. Materials & design, 2011, 32(2): 861-868.
[16] KELLER N, VON UNWERTH T.Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC[J]. Applied energy, 2022, 307: 118132.
[17] WEI L, DAFALLA A M, JIANG F M.Effects of reactants/coolant non-uniform inflow on the cold start performance of PEMFC stack[J]. International journal of hydrogen energy, 2020, 45(24): 13469-13482.
基金
国家自然科学基金(52305257); 天津市科技计划(22JCQNJC00110); 河北省自然科学基金(E2023202168)