基于气浮作用机理和结构动力学理论,考虑筒内气垫和筒内水塞的耦合作用,推导获得了复合筒型基础自振周期的计算公式,通过已有文献的试验值和计算值的比较,验证了该文计算方法的有效性和准确性。结果表明:通过气浮力折减系数考虑气垫-水塞的耦合质量特性,结合附加质量系数的合理取值范围对于精确预测复合筒型基础的自振周期是可行的;附加质量系数随着吃水的增加呈减小的趋势;充排气方式改变结构吃水来调整结构自振周期优于顶部压载方式。
Abstract
The composite bucket foundation is a commonly used type of foundation in the development of offshore wind power. Accurately evaluating its natural vibration period is crucial for the successful implementation of construction techniques such as air-floating towing, sinking, and floating. This paper derives a formula for calculating the natural vibration period of the composite cylinder foundation, taking into account the mechanism of air-floating, structural dynamics theory, and the coupling effect of the air cushion and water plug inside the bucket. The validity and accuracy of this calculation method are confirmed by comparing it to experimental and calculated values from existing literature. The results demonstrate that by considering the coupled mass characteristics of the air cushion and water plug, along with the air buoyancy decreasing coefficient and a reasonable range for the additional mass coefficient, it is possible to accurately predict the natural vibration period of the composite bucket foundation. The added mass coefficient decreases as the draft increases, and the charge and exhaust modes are more effective than the top ballast mode for adjusting the natural period of the structure by changing its draft.
关键词
海上风电 /
复合筒型基础 /
自振周期 /
附加质量系数 /
摇荡运动
Key words
offshore wind power /
composite bucket foundation /
natural vibration period /
added mass coefficient /
oscillatory motion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DING H Y, LIU Y G, ZHANG P Y, et al.Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean engineering, 2015, 103: 114-122.
[2] ZHU X, CHEN Z, GUAN Y F, et al.Field test on the mechanism of composite bucket foundation penetrating sandy silt overlying clay[J]. Ocean engineering, 2023, 288: 116102.
[3] LIAN J J, YE F D, WANG P W, et al.Integrated transportation of offshore wind turbine and bucket foundation based on a U and K shaped assembled platform[J]. Ocean engineering, 2023, 275: 114096.
[4] 黄绍幸, 许新鑫, 校建东, 等. 海上风电单柱复合筒型基础拖航浮运特性分析[J]. 太阳能学报, 2024, 45(1): 251-257.
HUANG S X, XU X X, XIAO J D, et al.Analysis of towage and flotation characteristics of single-column composite tubular foundation for offshore wind power[J]. Acta energiae solaris sinica, 2024, 45(1): 251-257.
[5] 刘俊峰, 倪道俊, 校建东, 等. 海上风电单柱复合筒型基础沉放过程分析[J]. 太阳能学报, 2023, 44(3): 239-243.
LIU J F, NI D J, XIAO J D, et al.Analysis of penetrating process of single-column composite bucket foundation for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(3): 239-243.
[6] ZHANG P Y, ZHAO X, DING H Y, et al.The wet-towing resistance of the composite bucket foundation for offshore wind turbines[J]. Marine structures, 2021, 80: 103089.
[7] SEIDL L H.Development of an ASP (Air Stabilized Platform) [R]. Hawaii: University of Hawaii, 1980: 88.
[8] BIE S A, JI C, REN Z, et al.Study on floating properties and stability of air floated structures[J]. China ocean engineering, 2002, 16(2): 263-272.
[9] VAN KESSEL J L F. Aircushion supported mega-floaters[D]. Delft: Delft University of Technology, 2010.
[10] 黄旭. 海上风电结构一体化安装技术的浮运分析[D]. 天津: 天津大学, 2012.
HUANG X.Floating analysis of integrated installation: technology with offshore wind-power[D]. Tianjin: Tianjin University, 2012.
[11] 闵巧玲. 复合筒型基础稳性及拖航运动特性分析[D]. 天津: 天津大学, 2018.
MIN Q L.Analysis of stability and towing motion characteristics of composite bucket foundation[D]. Tianjin: Tianjin University, 2018.
[12] 章李卉. 复合筒型基础优化分舱及浮运性态研究[D]. 天津: 天津大学, 2019.
ZHANG L H.Research on optimized subdivision and floatability of composite bucket foundation[D]. Tianjin: Tianjin University, 2019.
[13] WANG P W, WANG H J, GUO Y H, et al.The influence of wave-current on the motion response of air-floating structure[J]. Journal of renewable and sustainable energy, 2021, 13(6): 063305.
[14] WANG H J, LIU C, GUO Y H, et al.Experimental and numerical research on the wet-towing of wide-shallow bucket jacket foundation for offshore substation[J]. Ocean engineering, 2023, 275: 114126.
[15] 别社安, 时忠民, 王翎羽. 气浮结构的运动特性研究[J]. 中国港湾建设, 2001, 21(2): 18-21, 25.
BIE S A, SHI Z M, WANG L Y.Study on kinetic properties of air float structures[J]. China harbour engineering, 2001, 21(2): 18-21, 25.
[16] LIU X Q, ZHANG P Y, ZHAO M J, et al.Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines[J]. Energies, 2019, 12(21): 4108.
[17] 刘宪庆, 赵明阶, 乐丛欢, 等. 静水及波浪中四筒型基础的动力及运动特性研究[J]. 太阳能学报, 2022, 43(9): 211-217.
LIU X Q, ZHAO M J, LE C H, et al.Research on dynamic and motion characteristics of four bucket foundation in still water and waves[J]. Acta energiae solaris sinica, 2022, 43(9): 211-217.
[18] 张积乐. 人工岛基础气浮拖航运动性能试验研究[D]. 天津: 天津大学, 2012.
ZHANG J L.An experimental study on the motion: performances of air supported artificial[D]. Tianjin: Tianjin University, 2012.
[19] 孙树政, 李积德, 胡开业. 船舶耐波性[M]. 哈尔滨: 哈尔滨工程大学出版社, 2022.
SUN S Z, LI J D, HU K Y.Ship seakeeping[M]. Harbin: Harbin Engineering University Press, 2022.
[20] 高扬. 单柱复合筒型基础结构稳性及浮运特性研究[D]. 天津: 天津大学, 2023.
GAO Y.Research on stability and floating characteristics of mono-column composite bucket foundation[D]. Tianjin: Tianjin University, 2023.
基金
国家自然科学基金(52171274); 重庆市教委科学技术研究项目(KJQN202200740); 重庆市研究生导师团队建设项目(JDDSTD2022009); 重庆市自然科学基金(Cstc2021jcyj-msxmX0658)