该文开展长径比对漂浮式风力机基础结构涡激运动特性的影响研究。数值计算采用改进的延迟分离涡模型和动网格技术,探究长径比对浮式圆柱结构涡激响应的影响规律,分析结构的运动幅值、频率特性、运动轨迹及尾涡结构。研究发现,长径比对横荡影响最明显,纵荡次之,对艏摇基本无影响,浮式圆柱随长径比的增加使得锁定区间范围增大,进而加剧涡激共振响应。当长径比为0.5时未观察到涡激共振现象,此时自振频率随折合速度线性增大,其运动轨迹不规则;当长径比大于等于1.0时,浮式圆柱会发生涡激共振,其运动轨迹随长径比增大逐渐趋于规则八字形。结果表明,长径比是影响浮式圆柱激发涡激共振的重要因素。
Abstract
This study investigates the impact of the L/D ratio on the VIM characteristics of floating wind turbine foundations. Numerical simulations were conducted using an improved delayed detached eddy simulation (IDDES) model, integrated with dynamic mesh technology. The effect is studied through the vortex-induced motion of floating cylindrical structures. The analysis includes motion amplitude, frequency characteristics, motion trajectories, and wake structures. The findings reveal that the H/D ratio significantly influences sway motion, followed by heave motion, with negligible impact on yaw motion. An increase in the H/D ratio expands the lock-in region, intensifying vortex-induced resonance responses. No VIM is observed at an H/D ratio of 0.5; at this ratio, the natural frequency increases linearly with reduced velocity, and the motion trajectory is irregular. VIM occurs when the H/D ratio is greater than or equal to 1.0, and the motion trajectory evolves into a regular figure-eight shape as the H/D ratio increases. These results underscore the importance of the H/D ratio in influencing vortex-induced resonance in floating cylindrical structures.
关键词
海上浮式风力机 /
动力特性 /
浮式圆柱 /
数值模拟 /
长径比
Key words
offshore floating wind turbines /
dynamic characteristics /
floating cylinder /
numerical simulation /
aspect ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN Y H, LIN H Y.Overview of the development of offshore wind power generation in China[J]. Sustainable energy technologies and assessments, 2022, 53: 102766.
[2] MANNINI C, MARRA A M, BARTOLI G.VIV-galloping instability of rectangular cylinders: review and new experiments[J]. Journal of wind engineering and industrial aerodynamics, 2014, 132: 109-124.
[3] YIN D C, PASSANO E, JIANG F J, et al.State-of-the-art review of vortex-induced motions of floating offshore wind turbine structures[J]. Journal of marine science and engineering, 2022, 10(8): 1021.
[4] SRINIL N, ZANGANEH H, DAY A.Two-degree-of-freedom VIV of circular cylinder with variable natural frequency ratio: experimental and numerical investigations[J]. Ocean engineering, 2013, 73: 179-194.
[5] 魏东泽, 蔡国朕, 常爽, 等. 立柱截面形状对半潜式平台涡激运动特征影响试验研究[J]. 太阳能学报, 2019, 40(11): 3025-3030.
WEI D Z, CAI G Z, CHANG S, et al.Experimental study on column shape effects on vim of ss-platform[J]. Acta energiae solaris sinica, 2019, 40(11): 3025-3030.
[6] GONÇALVES R T, HANNES N H, CHAME M E F, et al. FIM-flow-induced motions of four-column platforms[J]. Applied ocean research, 2020, 95: 102019.
[7] WANG J, ZHOU B, YAO Z K, et al.The vortex-induced vibration of an elliptic cylinder with different aspect ratios[J]. Ocean engineering, 2022, 248: 110758.
[8] 肖阳宏, 李磊, 张兆德, 等. Spar型浮式风力机涡激运动特性及其抑制研究[J]. 太阳能学报, 2022, 43(10): 152-158.
XIAO Y H, LI L, ZHANG Z D, et al.Study on vortex-induced motion characteristics and suppression of Spar-type floating offshore wind turbine[J]. Acta energiae solaris sinica, 2022, 43(10): 152-158.
[9] 孙洪源, 张举明, 单亦石, 等. 考虑阻尼比的Spar式浮式风力机基础结构涡激运动特性研究[J]. 太阳能学报, 2022, 43(1): 154-160.
SUN H Y, ZHANG J M, SHAN Y S, et al.Study on vortex induced motion characteristics of Spar-type floating base structure for offshore wind turbine under different damping ratio[J]. Acta energiae solaris sinica, 2022, 43(1): 154-160.
[10] 周阳, 张艺林, 李忠明, 等. 高雷诺数下浮式圆柱体涡激运动试验研究[J]. 太阳能学报, 2023, 44(7): 536-541.
ZHOU Y, ZHANG Y L, LI Z M, et al.Experimental study on vortex-induced motion of floating cylinder at high Reynolds number[J]. Acta energiae solaris sinica, 2023, 44(7): 536-541.
[11] LIU Y C, GE D J, BAI X L, et al.A CFD study of vortex-induced motions of a semi-submersible floating offshore wind turbine[J]. Energies, 2023, 16(2): 698.
[12] LIU M Y, XIAO L F, LU H N, et al.Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences[J]. International journal of naval architecture and ocean engineering, 2017, 9(3): 326-338.
[13] LIU Y C, LIU F S, WANG E H, et al.The effect of base column on vortex-induced vibration of a circular cylinder with low aspect ratio[J]. Ocean engineering, 2020, 196: 106822.
[14] SHUR M L, SPALART P R, STRELETS M K, et al.A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International journal of heat and fluid flow, 2008, 29(6): 1638-1649.
[15] GONÇALVES R T, MENEGHINI J R, FUJARRA A L C. Vortex-induced vibration of floating circular cylinders with very low aspect ratio[J]. Ocean engineering, 2018, 154: 234-251.
[16] 李磊, 肖阳宏, 徐鹏, 等. 分离盘对Spar型浮式风力机涡激运动抑制特性的试验与数值研究[J]. 太阳能学报, 2024, 45(2): 181-188.
LI L, XIAO Y H, XU P, et al.Experimental and numerical study of suppression effect of splitter plate on vortex-induced motions of Spar-type floating offshore wind turbine[J]. Acta energiae solaris sinica, 2024, 45(2): 181-188.
基金
广西科技重大专项(桂科AA22068105); 国家自然科学基金(52471302; 52101330; 52061001)