退役动力电池特性及分选方法研究

王乔, 李海英, 汪小琪, 丁梦姗

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 273-283.

PDF(2385 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2385 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 273-283. DOI: 10.19912/j.0254-0096.tynxb.2024-0752

退役动力电池特性及分选方法研究

  • 王乔, 李海英, 汪小琪, 丁梦姗
作者信息 +

RESEARCH ON CHARACTERISTICS AND SORTING METHOD OF RETIRED POWER BATTERIES

  • Wang Qiao, Li Haiying, Wang Xiaoqi, Ding Mengshan
Author information +
文章历史 +

摘要

针对退役锂电池梯次利用过程中单体间一致性较差、分选效率低、无法满足使用要求的问题,研究首先对退役锂电池进行容量、内阻、自放电特性、循环寿命特性及充放电温升性能检测,分析电池当前性能状态;然后利用主成分分析(PCA)法对充电容量、放电容量、库伦效率、充电能量、放电能量、开路电压及内阻这7项性能参数进行分选因子筛选;最后通过数据预处理、优化初始点选取方式、改进距离公式对K均值算法进行优化,实现对电池的聚类划分。研究结果表明,高倍率放电会加速电池老化,且低温环境下电池放电容量下降明显。利用PCA算法筛选得出选用电池放电容量、开路电压、内阻作为分选因子能较全面地反映电池性能;通过改进后的K均值算法对300组数据进行聚类分选得出,当K=4时聚类效果最优。

Abstract

Aiming at the problem of poor consistency between individual cells, low sorting efficiency and failure to meet the use requirements during the recycling of retired lithium batteries, the study first tested the capacity, internal resistance, self-discharge characteristics, cycle life characteristics and charge and discharge thermal behavior of waste lithium batteries to analyze the current status of the battery performance; then the principal component analysis (PCA) method was used to screen the sorting factors of seven performance parameters, including charging capacity, discharge capacity, coulomb efficiency, charging energy, discharge energy, open circuit voltage and internal resistance; finally, the K-means algorithm was optimized by preprocessing the data, optimizing the initial point selection method and improving the distance formula to achieve clustering of the battery. The results show that high-rate discharge will accelerate battery aging, and the battery discharge capacity will decrease significantly under lower temperature conditions. Through PCA algorithm analysis, the battery discharge capacity, open circuit voltage and internal resistance can be selected as sorting factors, fully reflecting battery performance. The improved K-means algorithm was used to cluster and sort 300 groups of data, and it was found that when K=4, the clustering effect was optimal.

关键词

废旧锂电池 / 锂电池特性 / 聚类分选 / 主成分分析法 / K均值聚类算法

Key words

waste lithium batteries / lithium battery characteristics / clustering and sorting / principal component analysis / K-means clustering algorithm

引用本文

导出引用
王乔, 李海英, 汪小琪, 丁梦姗. 退役动力电池特性及分选方法研究[J]. 太阳能学报. 2025, 46(9): 273-283 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0752
Wang Qiao, Li Haiying, Wang Xiaoqi, Ding Mengshan. RESEARCH ON CHARACTERISTICS AND SORTING METHOD OF RETIRED POWER BATTERIES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 273-283 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0752
中图分类号: TM912   

参考文献

[1] 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96.
ZHOU Y W, CHEN Z, XU J H.Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC journal, 2022, 73(1): 85-96.
[2] 王海波, 林虹, 宋文龙, 等. 2024年上半年中国电池行业运行情况[J]. 电池, 2024, 54(4): 445-449.
WANG H B, LIN H, SONG W L, et al.Operation of China's battery industry in the first half of 2024[J]. Battery bimonthly, 2024, 54(4): 445-449.
[3] 于会群, 胡哲豪, 彭道刚, 等. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5): 1675-1685.
YU H Q, HU Z H, PENG D G, et al.Key technologies for retired power battery recovery and its cascade utilization in energy storage systems[J]. Energy storage science and technology, 2023, 12(5): 1675-1685.
[4] 李春生, 王生春, 宋驰, 等. 基于多状态耦合的退役动力电池模组双阶段分选方法[J]. 储能科学与技术, 2025, 14(2): 822-830.
LI C S, WANG S C, SONG C, et al.The two-stage sorting method for retired power battery modules based on multi-state coupling[J]. Energy storage science and technology, 2025, 14(2): 822-830.
[5] XU Z C, WANG J, LUND P D, et al.A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries[J]. Journal of energy storage, 2020, 29: 101303.
[6] HU L, YE Y, BO Y, et al.Performance evaluation strategy for battery pack of electric vehicles: online estimation and offline evaluation[J]. Energy reports, 2022, 8: 774-784.
[7] 孙舟, 田贺平, 王伟贤, 等. 梯次利用电池储能系统参与用户侧削峰填谷的经济性研究[J]. 太阳能学报, 2021, 42(4): 95-100.
SUN Z, TIAN H P, WANG W X, et al.Research on economy of echelon utilization battery energy storage system for user-side peak load shifting[J]. Acta energiae solaris sinica, 2021, 42(4): 95-100.
[8] 赵光金, 李博文, 胡玉霞, 等. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332.
ZHAO G J, LI B W, HU Y X, et al.Overview of the echelon utilization technology and engineering application of retired power batteries[J]. Energy storage science and technology, 2023, 12(7): 2319-2332.
[9] LAI X, QIAO D D, ZHENG Y J, et al.A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications[J]. Journal of cleaner production, 2019, 213: 776-791.
[10] 郑志坤, 赵光金, 金阳, 等. 基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J]. 电工技术学报, 2019, 34(S1): 388-395.
ZHENG Z K, ZHAO G J, JIN Y, et al.The reutilization screening of retired rlectric vehicle lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 388-395.
[11] 颜宁, 钟瑶, 李相俊, 等. 基于风险防御的退役动力电池递进式分选方法研究[J]. 太阳能学报, 2022, 43(5): 525-532.
YAN N, ZHONG Y, LI X J, et al.Research on progressive sorting method of retired power battery based on risk defense[J]. Acta energiae solaris sinica, 2022, 43(5): 525-532.
[12] 段双明, 王恩吉, 朱微, 等. 基于锂电池电压片段的退役电池快速筛选重组[J]. 电网技术, 2024, 48(10): 4264-4274.
DUAN S M, WANG E J, ZHU W, et al.Rapid screening and recombing of retired batteries based on voltage segments of lithiumion baterries[J]. Power system technology, 2024, 48(10): 4264-4274.
[13] 陈琳, 何熳平, 吴淑孝, 等. 基于自适应模糊C均值算法的退役锂离子电池快速聚类[J]. 汽车工程, 2024, 46(4): 643-651.
CHEN L, HE M P, WU S X, et al.Fast clustering of retired lithium-ion batteries based on adaptive fuzzy C-means algorithm[J]. Automotive engineering, 2024, 46(4): 643-651.
[14] 聂金泉, 高洋洋, 黄燕琴, 等. 融合充放电曲线特征与改进K-means聚类的退役锂电池分选方法[J]. 重庆理工大学学报(自然科学), 2024, 38(3): 354-362.
NIE J Q, GAO Y Y, HUANG Y Q, et al.A sorting method for retired lithium batteries based on charge-discharge curve features and improved K-means clustering[J]. Journal of Chongqing University of Technology(natural science), 2024, 38(3): 354-362.
[15] UNO M, LIN Z Y, KOYAMA K.Series-parallel reconfigurable electric double-layer capacitor module with cell equalization capability, high energy utilization ratio, and good modularity[J]. Energies, 2021, 14(12): 3689.
[16] 王乔, 李海英, 汪小琪, 等. 废旧锂离子电池正极材料有价金属回收研究进展[J]. 化学通报, 2024, 87(4): 441-448.
WANG Q, LI H Y, WANG X Q, et al.Research progress in valuable metal recovery from cathode materials of used lithium-ion batteries[J]. Chemistry, 2024, 87(4): 441-448.
[17] 梅简, 裘吕超, 惠洋, 等. 退役磷酸铁锂动力电池性能评估[J]. 电源技术, 2021, 45(8): 996-1000.
MEI J, QIU L C, HUI Y, et al.Performance evaluating of retired lithium iron phosphate power batteries[J]. Chinese journal of power sources, 2021, 45(8): 996-1000.
[18] 申永鹏, 孙嵩楠, 孙建彬, 等. 电流特征对锂离子电池性能的影响研究[J]. 太阳能学报, 2023, 44(6): 61-70.
SHEN Y P, SUN S N, SUN J B, et al.Research on influence of current characteristics on performance of lithium-ion battery[J]. Acta energiae solaris sinica, 2023, 44(6): 61-70.
[19] CHEN Z H, DENG Y L, LI H L, et al.An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization[J]. Journal of energy storage, 2022, 56: 105917.

基金

唐山市可再生能源重点实验室项目(20130221A)

PDF(2385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/