基于螺旋-花瓣耦合仿生流场的PEMFC性能分析与评价研究

周谦谋, 徐峰祥, 邹震, 蒋舟顺

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 382-389.

PDF(1600 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1600 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 382-389. DOI: 10.19912/j.0254-0096.tynxb.2024-0754

基于螺旋-花瓣耦合仿生流场的PEMFC性能分析与评价研究

  • 周谦谋1,2, 徐峰祥1,2, 邹震1,2, 蒋舟顺1,2
作者信息 +

PERFORMANCE ANALYSIS OF PEMFC WITH SPIRAL-PETAL COUPLED BIONIC FLOW FIELD

  • Zhou Qianmou1,2, Xu Fengxiang1,2, Zou Zhen1,2, Jiang Zhoushun1,2
Author information +
文章历史 +

摘要

该文基于仿生思想设计一种耦合螺旋线结构与花瓣分形的新型仿生流场(BFF),并将提出的BFF与传统单蛇流场(1SFF)、五蛇流场(5SFF)和平行流场(PFF)的PEMFC峰值功率密度、水气传输特性、电流密度分布以及压降等性能指标进行对比分析。研究结果表明:0.6 V工作电压下,BFF的氧气质量分数平均值比PFF高67.9%,水质量分数平均值相较于PFF降低23.9%,两项均匀性指数达到0.9高于其他3种流场;BFF各界面层的平均膜态水含量小于其余3种流场,有效地去除生成产物水;BFF显著地降低压降,整体压降仅为PFF的16.7%。BFF峰值功率密度分别比1SFF高3.7%、比5SFF高5.5%、比PFF高30.1%。

Abstract

This paper proposs a new bionic flow field (BFF) that integrates a spiral structure and petal-like fractals based on biomimetic principle, and compares the proposed BFF with the traditional single serpentine flow field (1SFF), five snake flow field (5SFF) and parallel flow The performance indicators of PEMFC such as peak power density, water vapor transmission characteristics, current density distribution and pressure drop are compared and analyzed. The research results show that: under the operating voltage of 0.6 V, the average oxygen mass fraction of BFF is 67.9% higher than that of PFF, the average water mass fraction is 23.9% lower than that of PFF, and the uniformity index is higher than that of the other three flow fields, reaching 0.9; The membrane water content of each interface layer of BFF is less than that of the other three flow fields, effectively removing the product water; BFF significantly reduces the pressure drop, and the overall pressure drop is only 16.7% of PFF. The peak power density of BFF is 3.7% higher than 1SFF, 5.5% higher than 5SFF, and 30.1% higher than PFF.

关键词

质子交换膜燃料电池(PEMFC) / 流场 / 数值模拟 / 仿生设计 / 水管理

Key words

proton exchange membrane fuel cell (PEMFC) / flow field / numerical simulation / bionic design / water management

引用本文

导出引用
周谦谋, 徐峰祥, 邹震, 蒋舟顺. 基于螺旋-花瓣耦合仿生流场的PEMFC性能分析与评价研究[J]. 太阳能学报. 2025, 46(9): 382-389 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0754
Zhou Qianmou, Xu Fengxiang, Zou Zhen, Jiang Zhoushun. PERFORMANCE ANALYSIS OF PEMFC WITH SPIRAL-PETAL COUPLED BIONIC FLOW FIELD[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 382-389 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0754
中图分类号: TK91   

参考文献

[1] WANG X R, MA Y, GAO J, et al.Review on water management methods for proton exchange membrane fuel cells[J]. International journal of hydrogen energy, 2021, 46(22): 12206-12229.
[2] İNCI M.Future vision of hydrogen fuel cells: a statistical review and research on applications, socio-economic impacts and forecasting prospects[J]. Sustainable energy technologies and assessments, 2022, 53: 102739.
[3] ZHOU Y, CHEN B.Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: a critical review[J]. Renewable and sustainable energy reviews, 2023, 185: 113584.
[4] LIM B H, MAJLAN E H, DAUD W R W, et al. Effects of flow field design on water management and reactant distribution in PEMFC: a review[J]. Ionics, 2016, 22(3): 301-316.
[5] 叶可, 颜永文, 李君, 等. 基于不同流道的PEMFC传质与水热平衡数值模拟[J]. 太阳能学报, 2021, 42(10): 349-354.
YE K, YAN Y W, LI J, et al.Numerical simulation of mass transfer and hydrothermal balance in pemfc based on different flow channels[J]. Acta energiae solaris sinica, 2021, 42(10): 349-354.
[6] CAI Y H, WU D, SUN J M, et al.The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC[J]. Energy, 2021, 222: 119951.
[7] 王珂, 张拴羊, 徐洪涛, 等. 基于神经元的PEMFC仿生流道性能模拟研究[J]. 太阳能学报, 2022, 43(6): 454-459.
WANG K, ZHANG S Y, XU H T, et al.Simulation study of bionic channel-inspired of proton exchange membrane fuel cell based on neuron[J]. Acta energiae solaris sinica, 2022, 43(6): 454-459.
[8] 谢启真, 郑明刚. PEMFC叶脉型仿生流道夹角参数研究[J]. 太阳能学报, 2021, 42(10): 361-366.
XIE Q Z, ZHENG M G.Research on flow channel angle parameters of bionic leaf-vein in pemfc[J]. Acta energiae solaris sinica, 2021, 42(10): 361-366.
[9] XIA L, YU Z T, XU G P, et al.Design and optimization of a novel composite bionic flow field structure using three-dimensional multiphase computational fluid dynamic method for proton exchange membrane fuel cell[J]. Energy conversion and management, 2021, 247: 114707.
[10] KJELSTRUP S, COPPENS M O, PHAROAH J G, et al.Nature-inspired energy-and material-efficient design of a polymer electrolyte membrane fuel cell[J]. Energy & fuels, 2010, 24(9): 5097-5108.
[11] ZHANG S Y, XU H T, QU Z G, et al.Bio-inspired flow channel designs for proton exchange membrane fuel cells: a review[J]. Journal of power sources, 2022, 522: 231003.
[12] KIM K H, LEE K Y, LEE S Y, et al.The effects of relative humidity on the performances of PEMFC MEAs with various Nafion® ionomer contents[J]. International journal of hydrogen energy, 2010, 35(23): 13104-13110.
[13] ARIF M, CHEUNG S C P, ANDREWS J. A systematic approach for matching simulated and experimental polarization curves for a PEM fuel cell[J]. International journal of hydrogen energy, 2020, 45(3): 2206-2223.
[14] WANG Y L, XU H K, WANG X D, et al.Multi-sub-inlets at cathode flow-field plate for current density homogenization and enhancement of PEM fuel cells in low relative humidity[J]. Energy conversion and management, 2022, 252: 115069.

基金

国家自然科学基金(52475277)

PDF(1600 KB)

Accesses

Citation

Detail

段落导航
相关文章

/