基于改进型INC的MPPT算法及实验验证

李和丰, 朱烨森, 栗振, Lund Peter, 王军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 484-489.

PDF(1391 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1391 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 484-489. DOI: 10.19912/j.0254-0096.tynxb.2024-0757

基于改进型INC的MPPT算法及实验验证

  • 李和丰1, 朱烨森2, 栗振1, Lund Peter1,3, 王军1
作者信息 +

MPPT ALGORITHM BASED ON IMPROVED INC AND EXPERIMENTAL VERIFICATION

  • Li Hefeng1, Zhu Yesen2, Li Zhen1, Lund Peter1,3, Wang Jun1
Author information +
文章历史 +

摘要

以最大功率追踪法为研究对象,针对太阳辐照度的变化,提出一种改进型电导增量法,基于该最大功率点追踪(MPPT)算法在Matlab/Simulink中建立光伏发电模型,并验证其可行性,利用6块相同温度条件的光伏组件进行实验,验证算法性能。结果表明:Matlab/Simulink中的模拟结果为改进型电导增量法比传统电导增量法拥有更好的最大功率追踪性能,经实验验证,改进型电导增量法比传统电导增量法在最大功率追踪性能上提升约4.33%。

Abstract

This paper proposes an improved incremental conductance (INC) method to address the variability of solar irradiance in maximum power point tracking (MPPT). Based on the MPPT algorithm, the photovoltaic power generation model is established in Matlab/Simulink, and its feasibility is verified. The six photovoltaic modules with the same temperature conditions are used to verify the performance of the algorithm. Simulation results in Matlab/Simulink show that the improved increment conductance method has better maximum power tracking performance than the traditional increment conductance method. Experimental results show that the improved increment conductance method achieves approximately 4.33% higher maximum power tracking efficiency than the traditional increment conductance method.

关键词

光伏技术 / 最大功率点追踪 / 算法 / 模拟验证 / 实验

Key words

photovoltaic technology / maximum power point tracking / algorithm / simulation verification / experiment

引用本文

导出引用
李和丰, 朱烨森, 栗振, Lund Peter, 王军. 基于改进型INC的MPPT算法及实验验证[J]. 太阳能学报. 2025, 46(9): 484-489 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0757
Li Hefeng, Zhu Yesen, Li Zhen, Lund Peter, Wang Jun. MPPT ALGORITHM BASED ON IMPROVED INC AND EXPERIMENTAL VERIFICATION[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 484-489 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0757
中图分类号: TK519   

参考文献

[1] LI J Y, GONG R X, FENG Z H.A novel MPPT intelligent multiple method based on constant voltage method and fuzzy control applied in photovoltaic power system[J]. Advanced science letters, 2012, 11(1): 184-188.
[2] LIU C, XIAO Z Q.PV MPPT based on improved perturbation observation method[J]. International core journal of engineering, 2021, 7(7): 307-311.
[3] OWUSU-NYARKO I, ELGENEDY M A, ABDELSALAM I, et al.Modified variable step-size incremental conductance MPPT technique for photovoltaic systems[J]. Electronics, 2021, 10(19): 2331.
[4] 辛小南, 李航宇, 程志平, 等. 基于二次插值的光伏MPPT改进算法研究[J]. 电测与仪表, 2017, 54(23): 10-16, 23.
XIN X N, LI H Y, CHENG Z P, et al. Research on photovoltaic MPPT improved algorithm based on Lagrange quadratic interpolation method[J]. Electrical measurement & instrumentation, 2017, 54(23): 10-16, 23.
[5] 温嘉斌, 刘密富. 光伏系统最大功率点追踪方法的改进[J]. 电力自动化设备, 2009, 29(6): 81-84.
WEN J B, LIU M F. Improvement of maximum power point tracking for photovoltaic system[J]. Electric power automation equipment, 2009, 29(6): 81-84.
[6] 贺婷, 龚仁喜, 李畸勇. 短路电流法与变步长扰动观察法结合的MPPT算法研究[J]. 电测与仪表, 2012, 49(7): 6-10.
HE T, GONG R X, LI J Y. Research on maximum-power-point tracking method based on the short-current combined with variable step P & O[J]. Electrical measurement & instrumentation, 2012, 49(7): 6-10.
[7] 胥芳, 张任, 吴乐彬, 等. 自适应BP神经网络在光伏MPPT中的应用[J]. 太阳能学报, 2012, 33(3): 468-472.
XU F, ZHANG R, WU L B, et al. Self-adaption BP neural network for the maximum-power-point tracking in photovoltaic[J]. Acta energiae solaris sinica, 2012, 33(3): 468-472.
[8] SHI J Y, ZHANG W, ZHANG Y G, et al.MPPT for PV systems based on a dormant PSO algorithm[J]. Electric power systems research, 2015, 123: 100-107.
[9] 杨标, 张晓虎. 基于粒子群优化算法和占空比扰动观察法的光伏阵列MPPT控制[J]. 电工技术, 2021(5): 32-36.
YANG B, ZHANG X H. The maximum power point tracking control of photovoltaic array based on particle swarm optimization algorithm and duty cycle disturbance observation method[J]. Electric engineering, 2021(5):32-36.
[10] 吴忠强, 谢宗奎, 王国勇, 等. 一种基于改进羊群算法的光伏系统最大功率跟踪策略[J]. 电子学报, 2020, 48(10): 2017-2024.
WU Z Q, XIE Z K, WANG G Y, et al. A maximum power point tracking strategy for photovoltaic system based on improved sheep behaviors optimization[J]. Acta electronica sinica, 2020, 48(10): 2017-2024.
[11] 赵巧静, 边敦新, 陈羽, 等. 基于改进麻雀搜索算法的MPPT方法[J]. 电源技术, 2021, 45(7): 911-914, 927.
ZHAO Q J, BIAN G X, CHEN Y. MPPT method based on improved sparrow search algorithm[J]. Chinese journal of power sources, 2021, 45(7): 911-914, 927.
[12] 吴姿瑾, 肖辉, 卢文韬, 等. 基于ILSLOA的局部遮荫下光伏发电最大功率追踪[J]. 电源技术, 2021, 45(4): 474-477.
WU Z J, XIAO H, LU W T, et al. Maximum power tracking of photovoltaic power generation under partial shading condition based on ILSLOA[J]. Chinese journal of power sources, 2021, 45(4): 474-477.
[13] 陈育虎, 侯涛. 基于改进细菌觅食算法的光伏阵列MPPT研究[J]. 电源技术, 2021, 45(6): 797-800.
CHEN Y H, HOU T. Research on photovoltaic array MPPT based on improved bacterial foraging optimization algorithm[J]. Chinese journal of power sources, 2021, 45(6): 797-800.
[14] 陈忠华, 刘博, 郭瑞, 等. 基于改进鸽群算法的光伏阵列MPPT方法[J]. 电力系统及其自动化学报, 2021, 33(8): 32-40.
CHEN Z H, LIU B, GUO R, et al. MPPT method for PV array based on improved pigeon-inspired optimization algorithm[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 32-40.
[15] 吴飞凡. 基于改进鲸鱼优化算法的光伏发电系统MPPT控制研究[D]. 阜新: 辽宁工程技术大学, 2022.
WU F F. Research on MPPT control of photovoltaic power generation system based on improved whale optimization algorithm[D]. Fuxin: Liaoning Technical University, 2022.
[16] 张鹏, 周碧英. 光伏电池精确工程模型及输出特性研究[J]. 电子测量与仪器学报, 2016, 30(1): 151-158.
ZHANG P, ZHOU B Y. Research on accurate engineering model and output characteristics of photovoltaic cell[J]. Journal of electronic measurement and instrumentation, 2016, 30(1): 151-158.
[17] HUYNH D C, DUNNIGAN M W.Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel[J]. IEEE transactions on sustainable energy, 2016, 7(4): 1421-1429.

基金

中央高校基本科研业务费专项(2242024k30069)

PDF(1391 KB)

Accesses

Citation

Detail

段落导航
相关文章

/