波浪形减反射/辐射冷却薄膜提升太阳电池性能

李晶晶, 王瑞祥, 邢美波

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 520-527.

PDF(1284 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1284 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 520-527. DOI: 10.19912/j.0254-0096.tynxb.2024-0778

波浪形减反射/辐射冷却薄膜提升太阳电池性能

  • 李晶晶, 王瑞祥, 邢美波
作者信息 +

ENHANCEMENT OF SOLAR CELL PERFORMANCE WITH WAVY ANTIREFLECTION AND RADIATIVE COOLING FILMS

  • Li Jingjing, Wang Ruixiang, Xing Meibo
Author information +
文章历史 +

摘要

为增强太阳电池的光电转换效率,提出将波浪形聚二甲基硅氧烷(PDMS)薄膜用于硅太阳电池,可同时实现减反射与辐射冷却双功能。采用时域有限差分(FDTD)方法模拟研究PDMS膜的厚度及波浪形貌参数对其光学性能的影响。结果表明:PDMS层厚度为60 μm,波浪形结构周期2 μm,振幅5 μm的波浪形PDMS薄膜性能最佳,在大气窗口波段(8~13 μm)可实现94%的发射率,在光伏响应波段(0.3~1.1 μm)可实现99.5%的太阳透过率。此外,该波浪形PDMS薄膜在减反射与辐射冷却的共同作用下,可将裸硅电池的温度降低5.82 ℃,可有效避免3.15%的电损失。

Abstract

This study proposes the use of a wavy polydimethylsiloxane (PDMS) film to enhance the photovoltaic conversion efficiency of silicon solar cells through antireflection and radiative cooling. Through finite-difference time-domain (FDTD) simulation, the effect of PDMS thickness and waveform parameters on the optical performance is investigated. The results show that the wavy PDMS film with a thickness of 60 μm, a wave period of 2 μm, and a wave amplitude of 5 μm has the optimal performance. It achieves 94% emissivity in the atmospheric window band (8-13 μm) and 99.5% solar transmittance in the photovoltaic response band (0.3-1.1 μm). In addition, this wavy PDMS film can reduce the temperature of bare silicon cells by 5.82 ℃ with the combined antireflection and radiative cooling, effectively avoiding 3.15% electrical losses.

关键词

太阳电池 / 辐射制冷 / 数值分析 / 光谱选择 / 热辐射 / 薄膜

Key words

solar cells / radiative cooling / numerical analysis / spectral selectivity / heat radiation / films

引用本文

导出引用
李晶晶, 王瑞祥, 邢美波. 波浪形减反射/辐射冷却薄膜提升太阳电池性能[J]. 太阳能学报. 2025, 46(9): 520-527 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0778
Li Jingjing, Wang Ruixiang, Xing Meibo. ENHANCEMENT OF SOLAR CELL PERFORMANCE WITH WAVY ANTIREFLECTION AND RADIATIVE COOLING FILMS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 520-527 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0778
中图分类号: TB64    TK519   

参考文献

[1] MASSON G, BOSCH E, VAN RECHEM A, et al. Snapshot of Global PV Markets2024[R]. IEA-PVPS T1-42,2024 .
[2] ZHAO B, HU M K, AO X Z, et al.Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 266-272.
DOI:10.1016/j.solmat.201 8.01.023.
[3] SIAH CHEHREH GHADIKOLAEI S. Solar photovoltaic cells performance improvement by cooling technology: an overall review[J]. International journal of hydrogen energy, 2021, 46(18): 10939-10972.
[4] SATO D, YAMADA N.Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method[J]. Renewable and sustainable energy reviews, 2019, 104: 151-166.
[5] 赵斌, 胡名科, 敖显泽, 等. 太阳能光伏发电-辐射制冷建筑一体化复合装置的性能分析[J]. 太阳能学报, 2019, 40(5): 1267-1275.
ZHAO B, HU M K, AO X Z, et al. Performance analysis of building integrated composite apparatus for both solar photovoltaic and radiative cooling[J]. Acta energiae solaris sinica, 2019, 40(5): 1267-1275.
[6] URDIROZ U, ITOIZ I, SEVILLA J, et al.Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells[J]. Energy reports, 2023, 10: 1116-1125.
[7] ZENG S N, PIAN S J, SU M Y, et al.Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[8] LEE M, KIM G, JUNG Y, et al.Photonic structures in radiative cooling[J]. Light, science & applications, 2023, 12(1): 134.
[9] MA H C, YAO K Q, DOU S L, et al.Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling[J]. Solar energy materials and solar cells, 2020, 212: 110584.
[10] 殷少有, 覃羽丰, 张宁. 辐射制冷膜的性能分析与优化设计[J]. 太阳能学报, 2021, 42(8): 231-234.
YIN S Y, QIN Y F, ZHANG N. Performance analysis and optimization design of radiation cooling film[J]. Acta energiae solaris sinica, 2021, 42(8): 231-234.
[11] SHENG C X, AN Y D, DU J, et al.Colored radiative cooler under optical tamm resonance[J]. ACS photonics, 2019, 6(10): 2545-2552.
[12] WENG Y, ZHANG W F, JIANG Y, et al.Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity[J]. Solar energy materials and solar cells, 2021, 230: 111205.
[13] CHEN M J, PANG D, MANDAL J, et al.Designing mesoporous photonic structures for high-performance passive daytime radiative cooling[J]. Nano letters, 2021, 21(3): 1412-1418.
[14] QI G G, TAN X Y, TU Y T, et al.Ordered-porous-array polymethyl methacrylate films for radiative cooling[J]. ACS applied materials & interfaces, 2022, 14(27): 31277-31284.
[15] ZHANG L, ZHAN H Y, XIA Y H, et al.Efficient passive daytime radiative cooling by hierarchically designed films integrating robust durability[J]. ACS applied materials & interfaces, 2023, 15(26): 31994-32001.
[16] YANG X B, GENG J L, TAN X Y, et al.A flexible PDMS@ZrO2 film for highly efficient passive radiative cooling[J]. Inorganic chemistry communications, 2023, 151: 110586.
[17] ATIGANYANUN S, KUMNORKAEW P.Effects of pigment volume concentration on radiative cooling properties of acrylic-based paints with calcium carbonate and hollow silicon dioxide microparticles[J]. International journal of sustainable energy, 2023, 42(1): 612-626.
[18] WANG K, LUO G L, GUO X W, et al.Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film[J]. Solar energy, 2021, 225: 245-251.
[19] JIANG Y, WANG J H, ZHOU Y Y, et al.Micro-structured polyethylene film as an optically selective and self-cleaning layer for enhancing durability of radiative coolers[J]. Nanophotonics, 2023, 12(12): 2213-2220.
[20] CAI C Y, CHEN W B, WEI Z C, et al.Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings[J]. Nano energy, 2023, 114: 108625.
[21] CHOWDHURY F I, XU Q W, SINHA K, et al.Novel application of lignin biopolymer for radiative cooling[J]. Infrared physics & technology, 2021, 117: 103840.
[22] LI W, SHI Y, CHEN K F, et al.A comprehensive photonic approach for solar cell cooling[J]. ACS photonics, 2017, 4(4): 774-782.
[23] CHENG Z M, WANG F Q, GONG D Y, et al.Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window”[J]. Solar energy materials and solar cells, 2020, 213: 110563.
[24] 黄珂, 张吉, 张卓奋, 等. 基于天空辐射冷却系统的光伏组件降温研究[J]. 太阳能学报, 2023, 44(2): 361-365.
HUANG K, ZHANG J, ZHANG Z F, et al. Cooling performance study of photovoltaic modules with sky radiative cooling systems[J]. Acta energiae solaris sinica, 2023, 44(2): 361-365.
[25] ZHAO B, LU K G, HU M K, et al.Radiative cooling of solar cells with micro-grating photonic cooler[J]. Renewable energy, 2022, 191: 662-668.
[26] LI D, LIU X, LI W, et al.Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature nanotechnology, 2021, 16(2): 153-158.
[27] TU Y T, TAN X Y, YANG X B, et al.Antireflection and radiative cooling difunctional coating design for silicon solar cells[J]. Optics express, 2023, 31(14): 22296-22307.
[28] SILVA-OELKER G, JARAMILLO-FERNANDEZ J.Numerical study of sodalime and PDMS hemisphere photonic structures for radiative cooling of silicon solar cells[J]. Optics express, 2022, 30(18): 32965-32977.
[29] GAO K, SHEN H L, LIU Y W, et al.Random inverted pyramid textured polydimethylsiloxane radiative cooling emitter for the heat dissipation of silicon solar cells[J]. Solar energy, 2022, 236: 703-711.
[30] REPHAELI E, RAMAN A, FAN S H.Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano letters, 2013, 13(4): 1457-1461.
[31] ZHAI Q W, ZHU Q Z.Radiative cooling film with self-cleaning function[J]. Solar energy materials and solar cells, 2021, 228: 111117.
[32] WANG T, WU Y, SHI L, et al.A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature communications, 2021, 12(1): 365.
[33] HUANG M Q, TANG G H, REN X J, et al.Effects of microstructure and moisture content on the radiative properties of porous films for radiative cooling[J]. Solar energy, 2023, 262: 111855.
[34] ZHAO B, HU M K, AO X Z, et al.Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module[J]. Solar energy, 2018, 176: 248-255.
[35] ZHANG X N, QIU J, ZHAO J M, et al.Complex refractive indices measurements of polymers in infrared bands[J]. Journal of quantitative spectroscopy and radiative transfer, 2020, 252: 107063.
[36] MA N X, LU F, TANG F, et al.Enhanced performance of perovskite solar cell by using wavy pattern microstructure antireflective foil as a front surface[J].Semiconductor science and technology, 2023, 38(8): 085012

基金

北京市自然科学基金(3242015); 北京市科技计划(Z231100006123014)

PDF(1284 KB)

Accesses

Citation

Detail

段落导航
相关文章

/