台风中/小尺度嵌套下大跨柔性光伏支架结构风振响应与稳定性分析

何正东, 李文杰, 张春伟, 张勤, 柯世堂, 孙圆

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 528-537.

PDF(7306 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7306 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 528-537. DOI: 10.19912/j.0254-0096.tynxb.2024-0784

台风中/小尺度嵌套下大跨柔性光伏支架结构风振响应与稳定性分析

  • 何正东1, 李文杰2, 张春伟2, 张勤3, 柯世堂2, 孙圆1
作者信息 +

WIND-INDUCED VIBRATION RESPONSE AND STABILITY ANALYSIS OF LARGE-SPAN FLEXIBLE PV SUPPORTS STRUCTURES UNDER NESTED MESO/SMALL-SCALE TYPHOONS

  • He Zhengdong1, Li Wenjie2, Zhang Chunwei2, Zhang Qin3, Ke Shitang2, Sun Yuan1
Author information +
文章历史 +

摘要

为探究台风作用下大跨柔性光伏支架结构的风振特性和稳定性,基于天气预报模式(WRF)模式开展三维近地面台风高分辨率模拟,采用自定义场函数将中尺度台风作为小尺度计算流体力学(CFD)数值模拟的入口边界条件;再结合某40 m跨度柔性光伏支架提出3种结构优化模型,探究台风下阵列风压分布和非线性风振特性,并分析不同优化模型结构失稳全过程,最后建立大跨柔性光伏支架阵列结构失稳判定模型。研究表明,大跨柔性光伏支架阵列最大风压在迎风首排区域,最大风压系数为0.85,最小风压出现在第二排,最小风压系数为0.15;不同结构模型总位移均主要以垂向位移为主,且在迎风面首排边跨局部三角撑杆率先失效,失稳判定模型表明考虑交叉斜杆和横向连杆为大跨度柔性光伏支架阵列的最优模型。

Abstract

To investigate the wind-induced vibration characteristics and stability of large-span flexible PV support structures under typhoons, a weather forecast model (WRF) based on the nonhydro-static equilibrium Euler equation model was used to simulate three-dimensional near-surface typhoon with the high spatiotemporal resolution, using a customized field function to incorporate a meso-scale typhoon as the inlet boundary condition for small-scale computational fluid dynamics(CFD) numerical simulations; Three structural optimization models were proposed based on a certain project of a 40 m large-span flexible PV support array. The wind pressure distribution characteristics and nonlinear wind vibration characteristics of large-span flexible PV support arrays under typhoons were investigated, and the entire process of structural instability of different optimization models was analyzed. Finally, a structural instability assessment model of large-span flexible PV support arrays was established. Research has shown that the maximum wind pressure of the large-span flexible PV support array occurs in the windward first-row area, with a maximum wind pressure coefficient of 0.85, and the minimum wind pressure occurs in the second row, with a minimum wind pressure coefficient of 0.15; The total displacement of different structural models is mainly in the Z-direction, and the structure is the first to fail in the local triangular braces of the first row of side spans on the windward side. The instability determination model shows that considering cross-diagonal braces and horizontal links is the optimal configuration for large-span flexible PV support arrays.

关键词

台风 / 光伏体系 / 气动稳定性 / 风振响应 / 结构优化设计

Key words

typhoons / photovoltaic system / aerodynamic stability / wind-induced vibration response / structural optimization

引用本文

导出引用
何正东, 李文杰, 张春伟, 张勤, 柯世堂, 孙圆. 台风中/小尺度嵌套下大跨柔性光伏支架结构风振响应与稳定性分析[J]. 太阳能学报. 2025, 46(9): 528-537 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0784
He Zhengdong, Li Wenjie, Zhang Chunwei, Zhang Qin, Ke Shitang, Sun Yuan. WIND-INDUCED VIBRATION RESPONSE AND STABILITY ANALYSIS OF LARGE-SPAN FLEXIBLE PV SUPPORTS STRUCTURES UNDER NESTED MESO/SMALL-SCALE TYPHOONS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 528-537 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0784
中图分类号: TU352.2    TM615   

参考文献

[1] ELHEFNY A, JIANG Z M, CAI J.Co-simulation and energy management of photovoltaic-rich residential communities for improved distribution voltage support with flexible loads[J]. Solar energy, 2022, 231: 516-526.
[2] 李猛. “双碳” 目标背景下完善我国碳中和立法的理论基础与实现路径[J]. 社会科学研究, 2021(6): 90-101.
LI M. Theoretical basis and realization path of perfecting China's carbon neutrality legislation under the background of “double carbon” goal[J]. Social science research, 2021(6): 90-101.
[3] PANTUA C A J, CALAUTIT J K, WU Y P. Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds[J]. Applied energy, 2021, 301: 117437.
[4] JACKSON N D, GUNDA T.Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States[J]. Applied energy, 2021, 302: 117508.
[5] 张炜, 薛建阳, 黄华, 等. 大倾角地面太阳电池板风荷载数值模拟研究[J]. 太阳能学报, 2021, 42(6): 138-145.
ZHANG W, XUE J Y, HUANG H, et al. Numerical simulation of wind load on solar cell panel with high-inclination[J]. Acta energiae solaris sinica, 2021, 42(6): 138-145.
[6] IRTAZA H, AGARWAL A.CFD simulation of turbulent wind effect on an array of ground-mounted solar PV panels[J]. Journal of the institution of engineers(India): series A, 2018, 99(2): 205-218.
[7] 彭晋卿, 张强志, 周聪, 等. 新型一体化通风光伏屋顶结构优化和节能潜力研究[J]. 太阳能学报, 2023, 44(12): 24-32.
PENG J Q, ZHANG Q Z, ZHOU C, et al. Structure optimization and energy saving potential investigation of novel intergrated ventilated PV roof[J]. Acta energiae solaris sinica, 2023, 44(12): 24-32.
[8] ZHANG W J, ZHAO Y Q, HUANG F C, et al.Forecasting the energy and economic benefits of photovoltaic technology in China's rural areas[J]. Sustainability, 2021, 13(15): 8408.
[9] 张亮, 朱紫玲, 罗冰冰, 等. 固定式光伏支架可承受荷载有限元分析[J]. 太阳能学报, 2022, 43(9): 15-20.
ZHANG L, ZHU Z L, LUO B B, et al. Finite element analysis of allowable load of fixed photovoltaic brackets[J]. Acta energiae solaris sinica, 2022, 43(9): 15-20.
[10] CHITTURI S R P, SHARMA E, ELMENREICH W. Efficiency of photovoltaic systems in mountainous areas[C]//2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 2018: 1-6.
[11] 郭涛, 杨渊茗, 黄国强, 等. 山区峡谷地形下柔性支撑光伏阵列的风振特性研究[J]. 太阳能学报, 2023, 44(11): 131-140.
GUO T, YANG Y M, HUANG G Q, et al. Wind-induced vibration analysis of flexible photovoltaic support structure under mountain canyon terrain[J]. Acta energiae solaris sinica, 2023, 44(11): 131-140.
[12] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU H, XU H W, ZHANG Y L, et al. Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74.
[13] BABATUNDE A A, ABBASOGLU S, SENOL M.Analysis of the impact of dust, tilt angle and orientation on performance of PV plants[J]. Renewable and sustainable energy reviews, 2018, 90: 1017-1026.
[14] 王彩玉, 马文勇, 韩晓乐, 等. 女儿墙对平屋面阵列光伏板风荷载的影响[J]. 工程力学, 2021, 38(S1): 216-222.
WANG C Y, MA W Y, HAN X L, et al. Effect of parapet on wind load of flat roof array solar pannel[J]. Engineering mechanics, 2021, 38(S1): 216-222.
[15] KIM Y C, TAMURA Y, YOSHIDA A, et al.Experimental investigation of aerodynamic vibrations of solar wing system[J]. Advances in structural engineering, 2018, 21(15): 2217-2226.
[16] HE X H, DING H, JING H Q, et al.Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104275.
[17] YEMENICI O, AKSOY M O.An experimental and numerical study of wind effects on a ground-mounted solar panel at different panel tilt angles and wind directions[J]. Journal of wind engineering and industrial aerodynamics, 2021, 213: 104630.
[18] SUÁREZ J L, CADENAS D, RUBIO H, et al. Vortex shedding dynamics behind a single solar PV panel over a range of tilt angles in uniform flow[J]. Fluids, 2022, 7(10): 322.
[19] STROBEL K, BANKS D.Effects of vortex shedding in arrays of long inclined flat plates and ramifications for ground-mounted photovoltaic arrays[J]. Journal of wind engineering and industrial aerodynamics, 2014, 133: 146-149.
[20] JOHNNY E, ARINDAM G C, PETER I.A new experimental-numerical approach to estimate peak wind loads on roof-mounted photovoltaic systems by incorporating inflow turbulence and dynamic effects[J]. Engineering structures, 2022, 252: 113739.
[21] LI W J, KE S T, CAI Z B, et al.Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind[J]. Solar energy, 2023, 264: 112000.
[22] MARUYAMA T, TOMOKIYO E, MAEDA J.Simulation of strong wind field by non-hydrostatic mesoscale model and its applicability for wind hazard assessment of buildings and houses[J]. Hydrological research letters, 2010, 4: 40-44.
[23] SKAMAROCK W C, KLEMP J B.A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. Journal of computational physics, 2008, 227(7): 3465-3485.
[24] ZHANG W Q, LI R, ZHU D L, et al.An investigation of impacts of surface waves-induced mixing on the upper ocean under typhoon Megi (2010)[J]. Remote sensing, 2023, 15(7): 1862.
[25] GB 50009—2012, 建筑结构荷载规范[S]. GB 50009—2012, Load code for the design of building structures[S].
[26] 陈俊岭, 何欣恒, 丛欧. 基于改进遗传算法的钢-混组合式风电机组塔架优化设计研究[J]. 太阳能学报, 2021, 42(7): 359-365.
CHEN J L, HE X H, CONG O. Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(7): 359-365.

基金

国家自然科学基金(52078251; 52211530086); 江苏省自然科学基金(BK20211518; BK20210309)

PDF(7306 KB)

Accesses

Citation

Detail

段落导航
相关文章

/