光伏组件热斑效应故障的知识表达及图谱构建

王道累, 张振, 郑欣, 方梦信, 朱瑞, 赵文彬

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 538-546.

PDF(1586 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1586 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 538-546. DOI: 10.19912/j.0254-0096.tynxb.2024-0786

光伏组件热斑效应故障的知识表达及图谱构建

  • 王道累1, 张振1, 郑欣2, 方梦信1, 朱瑞1, 赵文彬1
作者信息 +

KNOWLEDGE EXPRESSION AND GRAPH CONSTRUCTION OF HOT SPOT EFFECT FAULTS OF PHOTOVOLTAIC MODULES

  • Wang Daolei1, Zhang Zhen1, Zheng Xin2, Fang Mengxin1, Zhu Rui1, Zhao Wenbin1
Author information +
文章历史 +

摘要

提出一种构建热斑故障知识图谱的方法。首先对热斑故障知识表达进行规范化,收集相关文本信息制作语料库。其次通过改进的RoBERTa-BiLSTM-MHA-CRF模型对热斑故障知识进行实体识别,并在此基础上使用BERT模型进行关系抽取,最终将两部分的结果进行信息整合,构建出一张完整的热斑故障知识图谱。实验结果表明,所提出的实体识别模型对热斑故障知识的实体识别精度达到96.02%,召回率为93.56%,F1值达到94.77%。该方法能够精准构建光伏组件热斑故障知识图谱,可为光伏组件的智能化故障诊断提供可能性,同时也可为后续应用提供有力支撑。

Abstract

This paper proposes a method for constructing a knowledge graph for hot-spot failures. First, the hot-spot failure knowledge representation is standardized, and relevant text information is collected to create a corpus. Secondly, an improved RoBERTa-BiLSTM-MHA-CRF model is used to identify entities related to hot-spot failures. Based on this, the BERT model is used for relationship extraction. Finally, the results of these two parts are integrated to construct a complete hot-spot failure knowledge graph. Experimental results show that the proposed entity recognition model achieves an accuracy of 96.02% for hot-spot failure knowledge, a recall rate of 93.56%, and an F1 value of 94.77%. This method precisely constructs a knowledge graph for hot spot faults in photovoltaic modules,enabling intelligent fault diagnosis of PV modules and offering strong support for subsequent applications.

关键词

深度学习 / 太阳电池 / 自然语言处理 / 关系抽取 / RoBERTa-BiLSTM-MHA-CRF

Key words

deep learning / photovoltaic modules / natural language processing / knowledge graph / RoBERTa-BiLSTM-MHA-CRF

引用本文

导出引用
王道累, 张振, 郑欣, 方梦信, 朱瑞, 赵文彬. 光伏组件热斑效应故障的知识表达及图谱构建[J]. 太阳能学报. 2025, 46(9): 538-546 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0786
Wang Daolei, Zhang Zhen, Zheng Xin, Fang Mengxin, Zhu Rui, Zhao Wenbin. KNOWLEDGE EXPRESSION AND GRAPH CONSTRUCTION OF HOT SPOT EFFECT FAULTS OF PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 538-546 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0786
中图分类号: TM615   

参考文献

[1] 伊纪禄, 刘文祥, 马洪斌, 等. 太阳电池热斑现象和成因的分析[J]. 电源技术, 2012, 36(6): 816-818.
YI J L, LIU W X, MA H B, et al. Solar hot spot phenomenon and its analysis[J]. Chinese journal of power sources, 2012, 36(6): 816-818.
[2] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al. Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[3] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al. Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
[4] 蔡洁聪, 吕洪坤, 朱凌云, 等. 光伏发电站热斑检测技术综述[J]. 电源技术, 2021, 45(5): 683-685.
CAI J C, LYU H K, ZHU L Y, et al. Review of hot spot detection technology in photovoltaic power station[J]. Chinese journal of power sources, 2021, 45(5): 683-685.
[5] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536.
WANG D L, YAO C R, LI C, et al. Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536.
[6] 俞伊丽, 张展耀, 接晓霞, 等. 基于知识图谱与SCD文件的智能变电站二次检修安全措施自动生成技术研究[J]. 电力系统保护与控制, 2024, 52(2): 129-142.
YU Y L, ZHANG Z Y, JIE X X, et al. Automatic generation technology of secondary safety measures in an intelligent substation based on a knowledge graph and SCD files[J]. Power system protection and control, 2024, 52(2): 129-142.
[7] 武霁阳, 李强, 陈潜, 等. 知识图谱框架下基于深度学习的HVDC系统故障辨识[J]. 电力系统保护与控制, 2023, 51(20): 160-169.
WU J Y, LI Q, CHEN Q, et al. Fault identification of an HVDC system based on deep learning in the framework of a knowledge graph[J]. Power system protection and control, 2023, 51(20): 160-169.
[8] 黄简, 杨程, 冯天波, 等. 面向风电机组运维的知识图谱构建研究与应用[J]. 电力系统保护与控制, 2024, 52(8): 167-177.
HUANG J, YANG C, FENG T B, et al. Research and application of knowledge graph construction for wind turbine operation and maintenance[J]. Power system protection and control, 2024, 52(8): 167-177.
[9] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL].2019: arXiv: 1907.11692. https://arxiv.org/abs/1907.11692
[10] ZHANG P F, LI T R, WANG G Q, et al.Multi-source information fusion based on rough set theory: a review[J]. Information fusion, 2021, 68: 85-117.
[11] LI J N, LI D X, SAVARESE S, et al. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models[EB/OL].2023: arXiv: 2301.12597. https://arxiv.org/abs/2301.12597
[12] YANG X, ZHANG H W, CAI J F.Deconfounded image captioning: a causal retrospect[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(11): 12996-13010.
[13] 蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报, 2020, 31(2): 302-320.
CAI L, WANG S T, LIU J H, et al. Survey of data annotation[J]. Journal of software, 2020, 31(2): 302-320.
[14] YUN W, ZHANG X, LI Z D, et al.Knowledge modeling: a survey of processes and techniques[J]. International journal of intelligent systems, 2021, 36(4): 1686-1720.
[15] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37.
ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer engineering, 2022, 48(3): 23-37.
[16] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].2015: arXiv: 1508.01991. https://arxiv.org/abs/1508.01991
[17] 戴志辉, 张富泽, 张近月, 等. 基于MacBERT-BiLSTM-CRF模型的继电保护装置缺陷知识图谱构建方法[J]. 电力系统保护与控制, 2024, 52(20): 131-143.
DAI Z H, ZHANG F Z, ZHANG J Y, et al. Construction method of a defect knowledge map of a relay protection device based on a MacBERT-BiLSTM-CRF model[J]. Power system protection and control, 2024, 52(20): 131-143.
[18] CHUNG Y A, ZHU C G, ZENG M.SPLAT: speech-language joint pre-training for spoken language understanding[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 2021: 1897-1907.
[19] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar, 2014: 1724-1734.

基金

国家自然科学基金(12172210; 61502297)

PDF(1586 KB)

Accesses

Citation

Detail

段落导航
相关文章

/