计及多重不确定性的氢-电耦合热电联供系统配置优化

张雨檬, 李鑫, 王宁玲, 杨志平, 李承周, 王利刚

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 399-407.

PDF(2365 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2365 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 399-407. DOI: 10.19912/j.0254-0096.tynxb.2024-0789

计及多重不确定性的氢-电耦合热电联供系统配置优化

  • 张雨檬1, 李鑫2, 王宁玲2, 杨志平2, 李承周1, 王利刚1
作者信息 +

OPTIMIZATION OF HYDROGEN-ELECTRIC COUPLED COMBINED HEAT AND POWER SYSTEM WITH MULTIPLE UNCERTAINTIES

  • Zhang Yumeng1, Li Xin2, Wang Ningling2, Yang Zhiping2, Li Chengzhou1, Wang Ligang1
Author information +
文章历史 +

摘要

针对光伏-燃料电池-电解池-储氢-锂电池耦合热电联供系统,建立电-氢转化技术路线与容量配置协同优化的混合整数线性规划模型。计及关键部件成本以及电-氢转化技术路线不确定性,可选择的技术有可逆固体氧化物电池、质子交换膜燃料电池、质子交换膜电解池。结果显示,技术路线的选择和部件成本变化对用能成本有重要影响,用能成本范围为[0.40,1.15]元/kWh;可逆固体氧化物电池由于可以双模式运行,装备利用率及经济性较好,相较质子交换膜电池和锂电池更具优势。然而,当可逆固体氧化物电池成本达到2 万元/kW且质子交换膜电解池成本低至0.25万元/kW时,质子交换膜电池储能技术路线经济性更优;当可逆固体氧化物电池和质子交换膜电解池成本分别高于1.6万元/kW、0.4万元/kW,且锂电池成本低至0.04万元/kWh时,仅适合采用锂电池作为储能部件,此时用能成本低于0.73元/kWh。

Abstract

With the lowest total cost as the objective, this paper establishes a collaborative optimization model of technology selection and capacity allocation for the photovoltaic-fuel cell-electrolyzer-hydrogen storage-lithium battery coupling system, accounting for component cost uncertainty. Proton exchange membrane fuel cells, proton exchange membrane electrolyzers, and reversible solid oxide cells are optional hydrogen-electricity conversion technologies. Results revealed that the technical path selected and variations in component prices have a significant effect on the system configuration. Reversible solid oxide cells are able to operate in dual modes, resulting in high equipment utilization and economy, offering greater advantages over lithium battery storage technology, and proton exchange membrane cells. The levelized cost of energy ranges in [0.40, 1.15] RMB/kWh. However, the electricity-hydrogen coupling technology route based on proton exchange membrane cells has greater advantages when the cost of reversible solid oxide cells is more than 20000 RMB/kW and the cost of proton exchange membrane electrolyzers is less than 2500 RMB/kW. When the cost of reversible solid oxide cells and proton exchange membrane electrolyzers is higher than 16000 RMB/kW and 4000 RMB/kW, respectively, and the cost of lithium batteries is as low as 400 RMB/kWh, it is only suitable to use lithium batteries as energy storage components. Under those scenarios, the levelized cost of energy is less than 0.73 RMB/kWh.

关键词

/ 不确定性分析 / 燃料电池 / 电解池 / 容量优化

Key words

hydrogen / uncertainty analysis / fuel cells / electrolyzer / capacity optimization

引用本文

导出引用
张雨檬, 李鑫, 王宁玲, 杨志平, 李承周, 王利刚. 计及多重不确定性的氢-电耦合热电联供系统配置优化[J]. 太阳能学报. 2025, 46(9): 399-407 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0789
Zhang Yumeng, Li Xin, Wang Ningling, Yang Zhiping, Li Chengzhou, Wang Ligang. OPTIMIZATION OF HYDROGEN-ELECTRIC COUPLED COMBINED HEAT AND POWER SYSTEM WITH MULTIPLE UNCERTAINTIES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 399-407 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0789
中图分类号: TK91   

参考文献

[1] 徐岩, 张建浩, 张荟. 含冷、热、电、气的园区综合能源系统选址定容规划案例分析[J]. 太阳能学报, 2022, 43(1): 313-322.
XU Y, ZHANG J H, ZHANG H.Case analysis on site-selection capacity-determination planning of park integrated energy system with cold, hot, electricity and gas[J]. Acta energiae solaris sinica, 2022, 43(1): 313-322.
[2] 袁昊哲, 叶欢欢, 陈耀廷, 等. 农村微电网光储容量优化配置研究[J]. 广东电力, 2023, 36(5): 49-57.
YUAN H Z, YE H H, CHEN Y T, et al.Research on optimal configuration of photovoltaic and energy storage in rural microgrid[J]. Guangdong electric power, 2023, 36(5): 49-57.
[3] 刘红. 基于改进粒子群算法的储能调峰容量优化配置研究[J]. 广东电力, 2023, 36(1): 68-76.
LIU H.Research on optimal configuration of energy storage peak shaving capacity based on improved particle swarm optimization algorithm[J]. Guangdong electric power, 2023, 36(1): 68-76.
[4] 黄彦博, 冯忠楠, 随权, 等. 考虑实时SOC与动态循环效率的电池损耗评估及储能定容策略[J]. 太阳能学报, 2022, 43(11): 413-423.
HUANG Y B, FENG Z N, SUI Q, et al.Battery loss assessment and energy storage capacity configuration strategy considering real-time SOC and dynamic cycling efficiency[J]. Acta energiae solaris sinica, 2022, 43(11): 413-423.
[5] OURAMDANE O, ELBOUCHIKHI E, AMIRAT Y, et al.Optimal sizing of domestic grid-connected microgrid maximizing self consumption and battery lifespan[J]. IFAC-PapersOnLine, 2022, 55(12): 683-688.
[6] FAN H, WANG C Y, LIU L, et al.Review of uncertainty modeling for optimal operation of integrated energy system[J]. Frontiers in energy research, 2022, 9: 641337.
[7] 李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略[J]. 太阳能学报, 2020, 41(8): 67-78.
LI X Z, WANG W Q, WANG H Y, et al.Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization[J]. Acta energiae solaris sinica, 2020, 41(8): 67-78.
[8] ZHAI J Y, JIANG Y N, LI J N, et al.Distributed adjustable robust optimal power-gas flow considering wind power uncertainty[J]. International journal of electrical power & energy systems, 2022, 139: 107963.
[9] LI C Z, WANG N L, WANG Z, et al.Energy hub-based optimal planning framework for user-level integrated energy systems: considering synergistic effects under multiple uncertainties[J]. Applied energy, 2022, 307: 118099.
[10] LIU L C, CUI G M, CHEN J X, et al.Two-stage superstructure model for optimization of distributed energy systems (DES) part I: model development and verification[J]. Energy, 2022, 245: 123227.
[11] FENG J W, WANG H X, YANG Z H, et al.Economic dispatch of industrial park considering uncertainty of renewable energy based on a deep reinforcement learning approach[J]. Sustainable energy, grids and networks, 2023, 34: 101050.
[12] ADAIKKAPPAN M, SATHIYAMOORTHY N.Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: a review[J]. International journal of energy research, 2022, 46(3): 2141-2165.
[13] International Energy Agency.Technology readiness level (TRL)[EB/OL]. [2024-11-12].https://ieafuelcell.com/fileadmin/TRL/T005.pdf.
[14] BURKE A, OGDEN J, FULTON L.Hydrogen storage and transport: technologies and costs[R]. UCD-ITS-RR-24-17, 2024.
[15] International Energy Agency.Global EV Outlook[EB/OL]. [2024-11-12]. https://www.iea.org/reports/global-ev-outlook-2024.
[16] 中国光伏行业协会. 中国光伏产业发展路线图[EB/OL].[2024-11-12]. https://www.chinapv.org.cn/Industry/resource_1380.html.
[17] FAN L H, DENG H, ZHANG Y G, et al.Towards ultralow platinum loading proton exchange membrane fuel cells[J]. Energy & environmental science, 2023, 16(4): 1466-1479.
[18] BADGETT A, BRAUCH J, THATTE A A, et al.Updated manufactured cost analysis for proton exchange membrane water electrolyzers[R]. NREL/TP-6A20-87625, 2024.
[19] FAZLOLLAHI S, BUNGENER S L, MANDEL P, et al.Multi-objectives, multi-period optimization of district energy systems: I. selection of typical operating periods[J]. Computers & chemical engineering, 2014, 65: 54-66.
[20] OYEWOLE O L, NWULU N I, OKAMPO E J.Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties[J]. Energy conversion and management, 2024, 300: 117991.
[21] TOOPSHEKAN A, RAHDAN P, VAZIRI RAD M A, et al. Evaluation of a stand-alone CHP-Hybrid system using a multi-criteria decision making due to the sustainable development goals[J]. Sustainable cities and society, 2022, 87: 104170.

基金

国家重点研发计划项目(2023YFB4204000; 2022YFE0129400)

PDF(2365 KB)

Accesses

Citation

Detail

段落导航
相关文章

/