基于电解池工作模式的太阳能光热耦合固体氧化解制氢系统研究

张相鹏, 郑莆燕, 宋军, 朱群志, 赵航, 罗添

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 408-418.

PDF(1310 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1310 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 408-418. DOI: 10.19912/j.0254-0096.tynxb.2024-0798

基于电解池工作模式的太阳能光热耦合固体氧化解制氢系统研究

  • 张相鹏1, 郑莆燕1, 宋军2, 朱群志1, 赵航1, 罗添1
作者信息 +

STUDY OF SOLAR THERMAL COUPLED SOLID OXIDE ELECTROLYSIS HYDROGEN PRODUCTION SYSTEM BASED ON ELECTROLYZER CELL OPERATING MODES

  • Zhang Xiangpeng1, Zheng Puyan1, Song Jun2, Zhu Qunzhi1, Zhao Hang1, Luo Tian1
Author information +
文章历史 +

摘要

针对一种塔式太阳能光热耦合固体氧化物电解池(SOEC)制氢系统,引入熔盐储热,建立各子系统热力学模型,研究关键操作参数与工作模式对SOEC制氢性能的影响及其对系统电、热功率供需、储热容量与效率的影响。结果表明:相对于热中性模式,SOEC工作在放热模式的电解效率和系统制氢效率都会有所提升,且会减少系统对太阳辐射功率和储热容量的需求,工作温度越低电解效率和系统制氢效率的提升幅度越大。在工作温度为600 ℃的条件下,SOEC工作在进出口温差为100~400 ℃的放热模式时,系统制氢效率可提升5.14%~14.49%。因此,对于与太阳能光热耦合的SOEC系统,SOEC在低工作温度时,适当升高电流密度使其工作在放热模式对于提升自身电解效率和系统制氢效率都具有一定意义。

Abstract

For a solar thermal power tower coupled solid oxide electrolysis cell (SOEC) hydrogen production system with molten salt thermal storage, the thermodynamic model of each subsystem is established to analyze the effects of key operating parameters and operating modes on the performance of SOEC hydrogen production and its impact on the system electrical power and heat flow rate supply and demand, thermal storage capacity and efficiency. The results show that SOEC operating in exothermic mode enhances both electrolysis efficiency and system hydrogen production efficiency compared with thermo-neutral mode, and reduces solar radiant power and heat storage capacity required by the system. The lower the operating temperature of the electrolysis cell, the greater the enhancement. At the operating temperature of 600 ℃, the hydrogen production efficiency of the system can be enhanced by 5.14 % to 14.49 % when the SOEC is operated in the exothermic mode where the temperature difference between the inlet and outlet is from 100 ℃to 400 ℃. Therefore, for the SOEC hydrogen production system coupled with solar thermal, appropriately increasing the current density at low operating temperatures to make the electrolysis cell work in exothermic mode is of significance to improve both the electrolysis efficiency and the system hydrogen production efficiency.

关键词

电解 / 制氢 / 固体氧化物 / 太阳能光热 / 熔盐储热 / 工作模式

Key words

electrolysis / hydrogen production / solid oxide / solar thermal / molten salt thermal storage / operating modes

引用本文

导出引用
张相鹏, 郑莆燕, 宋军, 朱群志, 赵航, 罗添. 基于电解池工作模式的太阳能光热耦合固体氧化解制氢系统研究[J]. 太阳能学报. 2025, 46(9): 408-418 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0798
Zhang Xiangpeng, Zheng Puyan, Song Jun, Zhu Qunzhi, Zhao Hang, Luo Tian. STUDY OF SOLAR THERMAL COUPLED SOLID OXIDE ELECTROLYSIS HYDROGEN PRODUCTION SYSTEM BASED ON ELECTROLYZER CELL OPERATING MODES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 408-418 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0798
中图分类号: TK91   

参考文献

[1] 国家能源局. 国家能源局组织发布《新型电力系统发展蓝皮书》[EB/OL].[2023-06-02]. http://www.nea.gov.cn/2023-06/02/c_1310724249.htm.
National Energy Administration.National Energy Administration has organized the release of the “Blue Book for the Development of New Power Systems”[EB/OL]. [2023-06-02].http://www.nea.gov.cn/2023-06/02/c_1310724249.htm.
[2] 国家发展和改革委员会、国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. [2022-03-23]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
National Development and Reform Commission, National Energy Administration. Medium and longterm planning for hydrogen energy industry development(2021—2035)[EB/OL]. [2022-03-23]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[3] 俞红梅, 衣宝廉. 电解制氢与氢储能[J]. 中国工程科学, 2018, 20(3): 58-65.
YU H M, YI B L.Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic study of CAE, 2018, 20(3): 58-65.
[4] 杨燕梅, 李汶颖, 李航, 等. 电解水制氢标准体系研究与需求分析[J]. 中国电机工程学报, 2024, 44(8): 3072-3078.
YANG Y M, LI W Y, LI H, et al.Research and requirement analysis on standards system of water electrolysis for hydrogen production[J]. Proceedings of the CSEE, 2024, 44(8): 3072-3078.
[5] 窦真兰, 袁本峰, 张春雁, 等. 基于可逆固体氧化物电池的风光氢综合能源系统容量规划[J]. 中国电力, 2023, 56(10): 22-32.
DOU Z L, YUAN B F, ZHANG C Y, et al.Capacity planning of integrated energy system of wind photovoltaic and hydrogen based on reversible solid oxide cell[J]. Electric power, 2023, 56(10): 22-32.
[6] 刘同乐, 王诚, 付志强, 等. LSCF-GDC氧电极固体氧化物电堆高温蒸汽电解制氢性能研究[J]. 高校化学工程学报, 2016, 30(3): 575-581.
LIU T L, WANG C, FU Z Q, et al.Performance of solid oxide electrolysis stack with LSCF-GDC oxygen electrodes in hydrogen production from high temperature steam[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 575-581.
[7] 邵乐, 王绍荣. 管式固体氧化物电解池制氢性能研究[J]. 陶瓷学报, 2018, 39(2): 159-164.
SHAO L, WANG S R.The water electrolysis of tubular SOEC[J]. Journal of ceramics, 2018, 39(2): 159-164.
[8] YUE W X, LI Y F, ZHENG Y, et al.Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering[J]. Nano energy, 2019, 62: 64-78.
[9] ZHAO C H, LI Y F, ZHANG W Q, et al.Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells[J]. Energy & environmental science, 2020, 13(1): 53-85.
[10] NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2007, 32(13): 2305-2313.
[11] LIU M Y, YU B, XU J M, et al.Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of power sources, 2008, 177(2): 493-499.
[12] CAI Q, LUNA-ORTIZ E, ADJIMAN C S, et al.The effects of operating conditions on the performance of a solid oxide steam electrolyser: a model-based study[J]. Fuel cells, 2010, 10(6): 1114-1128.
[13] ALZAHRANI A A, DINCER I.Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2017, 42(33): 21404-21413.
[14] WANG J J, YAO W Q, CUI Z H, et al.Energy, exergy, and exergoeconomic analysis of solar-driven solid oxide electrolyzer system integrated with waste heat recovery for syngas production[J]. Journal of thermal science, 2023, 32(1): 135-152.
[15] SANZ-BERMEJO J, MUÑOZ-ANTÓN J, GONZALEZ-AGUILAR J, et al. Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production[J]. Applied energy, 2014, 131: 238-247.
[16] DANESHPOUR R, MEHRPOOYA M.Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy conversion and management, 2018, 176: 274-286.
[17] IM-ORB K, VISITDUMRONGKUL N, SAEBEA D, et al.Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of cleaner production, 2018, 170: 1-13.
[18] 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391.
MU S J, LIN J, XING X T, et al.Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power system technology, 2017, 41(10): 3385-3391.
[19] 靳壮杰, 杨雁, 张伟, 等. 固体氧化物电解池电解水制氢效率影响因素数值分析[J]. 化学工程, 2023, 51(12): 20-24, 61.
JIN Z J, YANG Y, ZHANG W, et al.Numerical analysis of factors influencing efficiency of hydrogen production by solid oxide electrolysis of water[J]. Chemical engineering(China), 2023, 51(12): 20-24, 61.
[20] FU Q X, MABILAT C, ZAHID M, et al.Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment[J]. Energy & environmental science, 2010, 3(10): 1382-1397.
[21] 尉倥. 集成固体氧化物电解池的分布式系统研究[D]. 北京: 华北电力大学, 2022.
YU K.Research on distributed system integrated with solid oxide electrolysis cells[D]. Beijing: North China Electric Power University, 2022.
[22] 付鹏, 王志峰, 余强, 等. 塔式太阳能热发电站热力性能综合评价[J]. 太阳能学报, 2021, 42(11): 86-97.
FU P, WANG Z F, YU Q, et al.Comprehensive thermal performance evaluation of tower solar power generation station[J]. Acta energiae solaris sinica, 2021, 42(11): 86-97.
[23] 李兴, 王志峰, 杨铭, 等. 塔式太阳能热电联供系统性能研究[J]. 太阳能学报, 2021, 42(6): 203-210.
LI X, WANG Z F, YANG M, et al.Performance study of cogeneration system based on solar power tower plant[J]. Acta energiae solaris sinica, 2021, 42(6): 203-210.
[24] ALZAHRANI A A, DINCER I.Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2016, 41(19): 8042-8056.
[25] 耿直, 曾庆仪, 蒋东翔, 等. 基于Ebsilon的槽式光热发电回热循环性能分析[J]. 热科学与技术, 2022, 21(4): 364-372.
GENG Z, ZENG Q Y, JIANG D X, et al.Performance analysis of regeneration cycle of trough CSP based on Ebsilon[J]. Journal of thermal science and technology, 2022, 21(4): 364-372.
[26] 徐玫, 王晓, 肖斌, 等. 塔式太阳能热发电系统性能模型及其仿真研究[J]. 太阳能学报, 2022, 43(2): 238-245.
XU M, WANG X, XIAO B, et al.Performance model and simulation study of solar power tower system[J]. Acta energiae solaris sinica, 2022, 43(2): 238-245.
[27] SCHEFOLD J, BRISSE A, POEPKE H.Long-term steam electrolysis with electrolyte-supported solid oxide cells[J]. Electrochimica acta, 2015, 179: 161-168.
[28] XU C, WANG Z F, LI X, et al.Energy and exergy analysis of solar power tower plants[J]. Applied thermal engineering, 2011, 31(17/18): 3904-3913.
[29] 尉倥, 段立强, 朱自强, 等. 太阳能驱动的固体氧化物电解池制氢系统性能研究[J]. 太阳能学报, 2022, 43(6): 536-545.
YU K, DUAN L Q, ZHU Z Q, et al.Performance study on solid oxide electrolytic cell hydrogen production system driven by solar energy[J]. Acta energiae solaris sinica, 2022, 43(6): 536-545.
[30] 王丹丹, 李亚楼, 李芳, 等. 碳中和背景下高温固体氧化物电解制氢的过程建模与热力学分析[J]. 发电技术, 2021, 42(5): 554-560.
WANG D D, LI Y L, LI F, et al.Process modelling and thermodynamic analysis of hydrogen production by high temperature solid oxide electrolysis under the background of carbon neutrality[J]. Power generation technology, 2021, 42(5): 554-560.

基金

甘肃省科技重大专项-工业类(22ZD11GA314)

PDF(1310 KB)

Accesses

Citation

Detail

段落导航
相关文章

/