以芦苇秸秆为研究对象,在常压低温条件下利用碱性过氧化氢进行预处理实验的研究。在不同NaOH浓度、H2O2添加量、时间和温度下进行单因素实验,在单因素实验的基础上进行响应面优化实验得出最佳工艺条件为:NaOH浓度为1.38%,H2O2添加量为 1.67%,时间2.17 h,温度69 ℃,木质素的去除率为83.83%,纤维素、半纤维素保留率分别为91.69%和61.94%;对预处理残渣进行酶解,24 h酶解率为71.08%,已达到酶解平衡,相比较同等条件下的原料酶解率显著提升。通过显微傅里叶红外光谱、X-射线衍射、热重分析和扫描电镜等方法对原料和预处理残渣的分析表明,碱性过氧化氢体系对芦苇秸秆预处理能够有效脱除木质素和半纤维素,破坏原料的顽固性,促进酶解产糖效率。
Abstract
Reed straw was subjected to pretreatment using alkaline hydrogen peroxide under atmospheric pressure and low-temperature conditions. Single-factor experiments were conducted to investigate the effects of varying NaOH concentration, H2O2 addition amount, time and temperature. Response surface optimization experiments were subsequently performed, yilding the following optimal parameters: 1.38% NaOH, 1.67% H2O2, 2.17 hours, and 69 °C. Under these conditions, the lignin removal rate reached 83.83%, with cellulose and hemicellulose retention rates of 91.69% and 61.94%, respectively. The enzymatic hydrolysis of the pretreated residue achieved a 24-hour hydrolysis rate of 71.08%, significantly surpassing that of the untreated raw material under equivalent conditions, reaching enzymatic equilibrium. Analytical techniques, including Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy, were employed to analyze both raw materials and pretreatment residues. The results demonstrated that the alkaline hydrogen peroxide pretreatment effectively removed lignin and hemicellulose, disrupted the structural integrity of the raw material, and enhanced the efficiency of enzymatic hydrolysis for sugar production. These findings offer valuable technical insights into the high value-added utilization of reed straw.
关键词
生物质 /
碱性过氧化氢 /
酶解 /
预处理 /
木质素去除率
Key words
biomass /
alkaline hydrogen peroxide /
enzymolysis /
pretreatment /
lignin removal rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HENRIK-KLEMENS Å, CAPUTO F, GHAFFARI R, et al.The glass transition temperature of isolated native, residual, and technical lignin[J]. Holzforschung, 2024, 78(4): 216-230.
[2] LANÇA M, GOMES J, CABRAL D, et al. Thermal performance of three concentrating collectors with bifacial PV cells. part Ⅱ-parametrical study[J]. Proceedings of the Institution of Mechanical Engineers, part A: journal of power and energy, 2024, 238(4): 723-730.
[3] 王芬芬. “双碳” 背景下《生物质能源开发与利用》课程新探索-木质纤维素催化转化制乳酸[J]. 广东化工, 2023, 50(20): 193-196.
WANG F F.New course exploration on biomass resource utilization and development under the background of “double carbon”-catalytic conversion of lignocellulose to lactic acid[J]. Guangdong chemical industry, 2023, 50(20): 193-196.
[4] TRIPATHI J, CAUSER T, CIOLKOSZ D E, et al.Non-energetic application of carbon-rich torrefied biomass in the bioeconomy: a review[J]. Biofuels, 2024, 15(4): 389-405.
[5] YIN F, JIANG T Y, LU X Y, et al.Improved reducing sugars production from enzymatic hydrolysis of rubber wood by surfactant-assisted hydrothermal pretreatment[J]. Journal of wood chemistry and technology, 2024, 44(3): 172-181.
[6] KANG H J, LEE Y J, LEE J K, et al.Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk[J]. Journal of bioresources and bioproducts, 2024, 9(2): 174-184.
[7] RABI PRASAD B, POLAKI S, PADHI R K.Isolation of delignifying bacteria and optimization of microbial pretreatment of biomass for bioenergy[J]. Biotechnology letters, 2024, 46(2): 183-199.
[8] 钟磊. 杨木组分在乙醇/水体系中的解离及其高值化转化利用的研究[D]. 济南:齐鲁工业大学, 2021.
ZHONG L.Study on the dissociation and high-value conversion and utilization of poplar components in ethanol/water system[D]. Ji'nan: Qilu University of Technology,2021.
[9] 黄灵芝. 竹子水热预处理过程中碳水化合物的溶出机制研究[D]. 南宁: 广西大学, 2020.
HUANG L Z.Mechanism of carbohydrate dissolution during hydrothermal pretreatment of bamboo[D]. Nanning: Guangxi University, 2020.
[10] FAN Y W, LI H L, SU S H, et al.Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar[J]. Chinese journal of catalysis, 2022, 43(3): 802-810.
[11] LUO M Y, TIAN D, SHEN F, et al.A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis[J]. Biomass conversion and biorefinery, 2019, 9(2): 321-331.
[12] CHEN B W, KAN Y N, ZHAI S C, et al.Unveiling the mechanism of various pretreatments on improving enzymatic hydrolysis efficiency of the giant reed by chromatic analysis[J]. Biomass conversion and biorefinery, 2023, 13(3): 2151-2161.
[13] MASSÉ D, GILBERT Y, SAVOIE P, et al.Methane yield from switchgrass and reed canarygrass grown in Eastern Canada[J]. Bioresource technology, 2011, 102(22): 10286-10292.
[14] TIAN Y L, ZHANG H Y, CHAI Y, et al.Biogas properties and enzymatic analysis during anaerobic fermentation of Phragmites australis straw and cow dung: influence of nickel chloride supplement[J]. Biodegradation, 2017, 28(1): 15-25.
[15] LIU J F, XIAO P, KUGA S, et al.Preparation of cationic lignocellulose nanofibers from reed straw via mechanochemical method and its application[J]. Cellulose, 2023, 30(11): 7251-7264.
[16] NREL/TP-510-42618,Determination of structural carbohydrates and lignin in biomass[S].
[17] 邓杨臻, 谭雪松, 王闻, 等. 四氢糠醇-稀酸体系预处理杂交狼尾草的试验研究[J]. 太阳能学报, 2020, 41(3): 339-344.
DENG Y Z, TAN X S, WANG W, et al.Research on pretreatment of hybrid pennisetum with tetrahydrofurfuryl alcohol/dilute acid system[J]. Acta energiae solaris sinica, 2020, 41(3): 339-344.
[18] JIANG D P, GE X M, ZHANG T, et al.Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: comparison of NaOH and Ca(OH)2[J]. Bioresource technology, 2020, 304: 123001.
[19] 颜蕾, 李彩群, 谢君, 等. 酸-碱两段组合预处理对杨木发酵的影响[J]. 农业工程学报, 2023, 39(24): 254-263.
YAN L, LI C Q, XIE J, et al.Effect of acid-alkali combination pretreatment on poplar fermentation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24): 254-263.
[20] 苗林平, 霍丽, 徐力, 等. 碱性过氧化氢预处理小麦秸秆强化酶解产糖的研究[J]. 纤维素科学与技术, 2018, 26(4): 45-51.
MIAO L P, HUO L, XU L, et al.Effects of mild alkaline hydrogen peroxide (AHP) pretreatment on enzymatic saccharification of wheat straw[J]. Journal of cellulose science and technology, 2018, 26(4): 45-51.
[21] 詹云妮, 黄晨, 程金元, 等. 竹材碱性过氧化氢预处理及其酶水解性能研究[J]. 太阳能学报, 2022, 43(10): 326-334.
ZHAN Y N, HUANG C, CHENG J Y, et al.Study of alkaline hydrogen peroxide pretreatment and enzymatic hydrolysis of bamboo[J]. Acta energiae solaris sinica, 2022, 43(10): 326-334.
[22] 熊佳定, 丁为民, 王文鑫, 等. 热过氧化氢预处理对花生秸秆酶解的影响[J]. 太阳能学报, 2018, 39(9): 2569-2575.
XIONG J D, DING W M, WANG W X, et al.Effects of thermo-hydrogen peroxide pretreatment on enzymatic hydrolysis of peanut straw[J]. Acta energiae solaris sinica, 2018, 39(9): 2569-2575.
[23] HU Z F, WANG X B, ADEOSUN A, et al.Aggravated fine particulate matter emissions from heating-upgraded biomass and biochar combustion: the effect of pretreatment temperature[J]. Fuel processing technology, 2018, 171: 1-9.
[24] XIAO L G, DING Y B, YAN G.Effect of hot-pressing temperature on characteristics of alkali pretreated reed straw bio-board[J]. Journal of wood chemistry and technology, 2021, 41(4): 160-168.
[25] 孙竹文, 刘正群, 朱龙博, 等. 芦苇秸秆氧化钙和碳酸钠预处理工艺优化及结构分析[J]. 中国畜牧兽医, 2023, 50(9): 3562-3572.
SUN Z W, LIU Z Q, ZHU L B, et al.Process optimization and structure analysis of calcium oxide and sodium carbonate pretreatment of reed straw[J]. China animal husbandry & veterinary medicine, 2023, 50(9): 3562-3572.
[26] 陈思妤, 焦叶, 崔波, 等. 膳食纤维理化特性及其改性方法研究进展[J]. 食品与机械, 2022, 38(5): 234-240.
CHEN S Y, JIAO Y, CUI B, et al.Research progress in physicochemical properties and modification methods of dietary fiber[J]. Food and machinery, 2022, 38(5): 234-240.
[27] 张力月. 毛竹亚硫酸铵预处理工艺及其酶水解性能研究[D]. 北京: 中国林业科学研究院, 2020.
ZHANG L Y.Study on pretreatment process of ammonium sulfite of bamboo and its enzymatic hydrolysis properties[D]. Beijing: Chinese Academy of Forestry, 2020.
[28] 郭淑青, 董向元, 宋国辉, 等. 脱灰预处理对稻秆水热碳化特性的影响[J]. 太阳能学报, 2021, 42(5): 459-463.
GUO S Q, DONG X Y, SONG G H, et al.Effect of de-ashing pretreatment on hydrothermal carbonization of rice straw[J]. Acta energiae solaris sinica, 2021, 42(5): 459-463.
[29] HU J J, HE Z, ZHANG Q G, et al.Simultaneous pretreatment with ultraviolet light and alkaline H2O2 to promote enzymatic hydrolysis of corn stover[J]. BioResources, 2023, 18(3): 4754-4770.
基金
国家重点研发计划(2022YFE0207100)