基于组合权重-蒙特卡洛法的PMSG低电压穿越性能优化研究

高本锋, 张江放, 邓晓洋, 吴林林, 王潇, 郑展翔

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 439-449.

PDF(3732 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3732 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 439-449. DOI: 10.19912/j.0254-0096.tynxb.2024-0834
第二十七届中国科协年会学术论文

基于组合权重-蒙特卡洛法的PMSG低电压穿越性能优化研究

  • 高本锋1, 张江放1, 邓晓洋2, 吴林林2, 王潇2, 郑展翔1
作者信息 +

RESEARCH ON PMSG LOW VOLTAGE RIDE THROUGH PERFORMANCE OPTIMIZATION BASED ON COMBINED WEIGHTING-MONTE CARLO METHOD

  • Gao Benfeng1, Zhang Jiangfang1, Deng Xiaoyang2, Wu Linlin2, Wang Xiao2, Zheng Zhanxiang1
Author information +
文章历史 +

摘要

新能源汇集送端电网配套火电机组少,电网强度较弱,交流短路故障下的电压跌落以及故障后的暂态过电压易引发风电脱网,需同时关注风电机组的低电压穿越特性和机端暂态过电压特性。针对现有的控制参数优化方法所用的目标函数不能同时兼顾风电机组的低电压穿越特性和暂态过电压特性的问题,提出一种基于组合权重-蒙特卡洛法的永磁直驱风力机(PMSG)低电压穿越性能优化方法。首先,建立PMSG的暂态无功电压响应解析模型,通过参数灵敏度分析辨识弱电网下影响PMSG低电压穿越性能的关键控制参数,并计算得到待优化参数的优化可行域。然后,基于组合权重法确定能够同时反映PMSG低电压穿越特性和机端暂态过电压特性的综合优化指标。以此为基础,在优化可行域内运用蒙特卡洛算法对关键控制参数进行优化。最后,在不同运行工况下对优化后的控制参数进行验证。结果表明,采用优化控制参数的PMSG在弱电网下的低电压穿越综合性能有明显提升,且表现出较好的动态响应性能,优化控制参数也适用于不同电压跌落程度的工况,证明了优化方法的有效性和适用性。

Abstract

There are few thermal power units in the power grid of the new energy collection and transmission end, and the power grid strength is weak. The voltage drop under AC short circuit fault and the transient overvoltage after the faults can easily to cause wind turbines off-grid. It is necessary to pay attention to the low voltage ride through characteristics of the wind turbines and the transient overvoltage characteristics of the units port. In response to the issue that the objective functions used in existing control parameter optimization methods cannot simultaneously address the low voltage ride-through characteristics and transient overvoltage characteristics of wind turbines, a low voltage ride-through performance optimization method for permanent magnet direct drive wind turbines (PMSG) based on combined weighting-Monte Carlo method is proposed. Firstly, the transient reactive voltage response analytical model of PMSG is established, and the key control parameters affecting the low voltage ride through performance of PMSG are identified by parameter sensitivity analysis, and the optimization feasible domain of the parameters to be optimized is calculated. Then, based on the combined weighting method, a comprehensive optimization index which can reflect both the low voltage ride through characteristics and transient overvoltage characteristics of PMSG is determined. On this basis, Monte Carlo algorithm is used to optimize the key control parameters in the optimization feasible domain. Finally, the optimized control parameters are verified under different operating conditions. The results show that PMSG with optimized control parameters has significantly improved the comprehensive performance of low voltage ride through under weak power grid, and shows better dynamic response performance. The optimized control parameters are also applicable to the scenarios with different voltage sag degrees, which proves the effectiveness and applicability of the optimization method.

关键词

风力机 / 低电压穿越 / 控制参数优化 / 暂态过电压 / 蒙特卡洛法

Key words

wind turbines / low voltage ride-through / control parameter optimization / transient overvoltage / Monte Carlo method

引用本文

导出引用
高本锋, 张江放, 邓晓洋, 吴林林, 王潇, 郑展翔. 基于组合权重-蒙特卡洛法的PMSG低电压穿越性能优化研究[J]. 太阳能学报. 2025, 46(7): 439-449 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0834
Gao Benfeng, Zhang Jiangfang, Deng Xiaoyang, Wu Linlin, Wang Xiao, Zheng Zhanxiang. RESEARCH ON PMSG LOW VOLTAGE RIDE THROUGH PERFORMANCE OPTIMIZATION BASED ON COMBINED WEIGHTING-MONTE CARLO METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 439-449 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0834
中图分类号: TM712   

参考文献

[1] 卢纯. 开启我国能源体系重大变革和清洁可再生能源创新发展新时代: 深刻理解碳达峰、碳中和目标的重大历史意义[J]. 人民论坛·学术前沿, 2021(14): 28-41.
LU C.Opening a new era of major changes in China’s energy system and innovative development of clean and renewable energy: deeply understanding the great historical significance of the targets of carbon peak and carbon neutralization[J]. Frontiers, 2021(14): 28-41.
[2] 国家电网有限公司. 国家电网有限公司服务新能源发展报告2021[R]. 北京: 国家电网有限公司, 2021.
State Grid Corporation of China. Report on the service for new energy development 2021[R]. Beijing: State Grid Coporation of China, 2021.
[3] 陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
CHEN G P, LI M J, XU T, et al.Practice and challenge of renewable energy development based on interconnected power grids[J]. Power system technology, 2017, 41(10): 3095-3103.
[4] SUN D W, LIU H, GAO S N, et al.Comparison of different virtual inertia control methods for inverter-based generators[J]. Journal of modern power systems and clean energy, 2020, 8(4): 768-777.
[5] GB/T 36995—2018, 风力发电机组故障电压穿越能力测试规程[S].
GB/T 36995—2018, Wind turbines-test procedure of voltage fault ride through capability[S].
[6] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T L, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[7] 孙大卫, 吴林林, 刘辉, 等. 弱电网直驱风机低电压穿越特性及其对机端暂态电压的影响[J]. 中国电机工程学报, 2021, 41(14): 4777-4786.
SUN D W, WU L L, LIU H, et al.Effect of the low voltage ride through characteristics on PMSG terminal transient voltage in weakly-synchronized gird[J]. Proceedings of the CSEE, 2021, 41(14): 4777-4786.
[8] 郭春义, 吕乃航, 张加卿. 提高LCC-HVDC在弱交流系统下的稳定性和动态性能的控制参数优化方法[J]. 电工技术学报, 2023, 38(7): 1751-1764, 1779.
GUO C Y, LYU N H, ZHANG J Q.Optimization of control parameters to enhance stability and dynamic performance of LCC-HVDC under weak AC condition[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1751-1764, 1779.
[9] 李光辉, 王伟胜, 何国庆, 等. 风电基地经特高压直流送出系统换相失败故障(三): 送端风电机组暂态过电压抑制措施[J]. 中国电机工程学报, 2022, 42(14): 5079-5089.
LI G H, WANG W S, HE G Q, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅲ): transient overvoltage suppression measures of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(14): 5079-5089.
[10] 王熙纯, 刘纯, 林伟芳, 等. 风机故障穿越特性对大规模风电直流外送系统暂态过电压的影响及参数优化[J]. 电网技术, 2021, 45(12): 4612-4621.
WANG X C, LIU C, LIN W F, et al.Influence of wind turbine fault ride-through characteristics on transient overvoltage of large-scale wind power DC transmission systems and parameter optimization[J]. Power system technology, 2021, 45(12): 4612-4621.
[11] 林伟芳, 任晓钰, 张桂红, 等. 考虑功角稳定和暂态过电压的新能源电压穿越控制参数优化[J]. 电网技术, 2023, 47(4): 1323-1331.
LIN W F, REN X Y, ZHANG G H, et al.Optimization of voltage ride-through control parameters of renewable energy considering power angle stability and transient overvoltage[J]. Power system technology, 2023, 47(4): 1323-1331.
[12] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46-55.
CHEN H H, LU H W, WANG C J, et al.Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric power automation equipment, 2020, 40(10): 46-55.
[13] 黄琳妮. 基于群飞蛾扑火算法的风力发电系统PI控制参数优化整定[D]. 广州: 华南理工大学, 2018.
HUANG L N.Optimization of PI control parameters of wind energy system based on swarm moths flame algorithm[D]. Guangzhou: South China University of Technology, 2018.
[14] 余欣梅, 陈豪君, 王星华. 基于深度神经网络的DFIG低电压穿越技术研究[J]. 南方能源建设, 2021, 8(3): 122-130.
YU X M, CHEN H J, WANG X H.Research on low voltage ride through technology of DFIG based on deep neural networks[J]. Southern energy construction, 2021, 8(3): 122-130.
[15] 甄永赞, 苏宁赛, 李美林. 适用于高/低电压穿越的双馈风机协同控制策略及其稳定技术研究[J]. 电网技术, 2021, 45(1): 39-49.
ZHEN Y Z, SU N S, LI M L.Research on doubly-fed induction generators synergetic control strategy and stability technology for high/low voltage ride through[J]. Power system technology, 2021, 45(1): 39-49.
[16] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一): 送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4405.
HE G Q, WANG W S, LIU C, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅰ): transient reactive power and voltage modeling of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4405.
[17] LIU J.EMT validation of fault-ride-through capabilities of wind turbines induction generators with full-rating converter[D]. Copenhagen: Technical University of Denmark, 2010.
[18] 年珩, 金萧, 李光辉. 特高压直流换相失败对送端电网风机暂态无功特性的影响分析[J]. 中国电机工程学报, 2020, 40(13): 4111-4122.
NIAN H, JIN X, LI G H.Influence of UHV DC commutation failure on the transient reactive power characteristics of wind turbines in sending terminal grid[J]. Proceedings of the CSEE, 2020, 40(13): 4111-4122.
[19] 郑涛, 邹芃蓥, 王子鸣. 计及锁相环动态响应特性的光伏并网系统故障电流解析计算[J]. 电网技术, 2022, 46(12): 4656-4667.
ZHENG T, ZOU P Y, WANG Z M.Fault current analysis of photovoltaic grid-connected system considering dynamic response characteristics of PLL[J]. Power system technology, 2022, 46(12): 4656-4667.
[20] 杨天翔, 程志江, 杨涵棣, 等. 基于自抗扰控制的风电并网变流器锁相环设计[J]. 太阳能学报, 2023, 44(4): 147-155.
YANG T X, CHENG Z J, YANG H D, et al.Design of phase-locked loop of grid connected converter based on active disturbance rejection control[J]. Acta energiae solaris sinica, 2023, 44(4): 147-155.
[21] SHANNON C E.A mathematical theory of communication[J]. Bell system technical journal, 1948, 27(3): 379-423.
[22] 朱陆陆. 蒙特卡洛方法及应用[D]. 武汉: 华中师范大学, 2014.
ZHU L L.The Monte Carlo method and application[D]. Wuhan: Central China Normal University, 2014.
[23] 陶云坤, 白建波, 邓士峰, 等. 基于蒙特卡罗方法的双面光伏组件年发电性能研究[J]. 太阳能学报, 2021, 42(11): 51-58.
TAO Y K, BAI J B, DENG S F, et al.Research on annual power generation performance of bifacial photovoltaic modules based on Monte Carlo method[J]. Acta energiae solaris sinica, 2021, 42(11): 51-58.
[24] 袁桂丽, 贾新潮, 陈少梁, 等. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
YUAN G L, JIA X C, CHEN S L, et al.Multiobjective optimal dispatch considering source-load coordination for virtual power plant[J]. Acta energiae solaris sinica, 2021, 42(5): 105-112.
[25] 曾江, 蔡东阳. 基于组合权重的蒙特卡洛电压暂降评估方法[J]. 电网技术, 2016, 40(5): 1469-1475.
ZENG J, CAI D Y.A Monte Carlo assessment method of voltage sags based on combination weight[J]. Power system technology, 2016, 40(5): 1469-1475.
[26] 罗毅, 李昱龙. 基于熵权法和灰色关联分析法的输电网规划方案综合决策[J]. 电网技术, 2013, 37(1): 77-81.
LUO Y, LI Y L.Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power system technology, 2013, 37(1): 77-81.
[27] 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143.
XIE B C, ZHANG Y, XU Z Y, et al.Review on multidisciplinary optimization key technology of electrical machine based on surrogate models[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5117-5143.

基金

华北电力科学研究院有限责任公司科技项目(KJZ2023123)

PDF(3732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/