该文针对大型浮式风力机的系泊系统,研究其疲劳计算分析方法,引入Goodman方程,考虑动张力的平均应力值来修正系泊线应力的非对称峰值,并基于修正后的不同应力峰值确定临界疲劳循环次数,进而计算疲劳损伤。利用该方法计算10 MW风力机系泊线的疲劳损伤和疲劳寿命,结果表明系泊线平均应力值对疲劳损伤有重要影响,在系泊线的疲劳分析中,应引入Goodman修正计算疲劳损伤,该文10 MW风力机疲劳性能满足要求。
Abstract
The fatigue calculation and analysis method is studied for the mooring system of large floating wind turbine. The dynamic tension of the floating wind turbine mooring system is time-varyingand asymmetric about the time axis. The effect of the average cyclic stress is ignored in the current fatigue analysis of floating wind turbine mooring lines. Only the effect of the asymmetric peak of the mooring tension is considered to calculate the fatigue damage. The Goodman equation is introduced to correct the asymmetric peak value of mooring line stress by considering the average cyclic stress value of the dynamic tension. The critical fatigue cycle number is determined based on the corrected peak value of different stresses to calculate the fatigue damage. Based on the Goodman equation correction method, the fatigue damage and fatigue life of 10 MW wind turbine were calculated. The results show that the cycle-averaged stress value of the mooring line has an important influence on the fatigue damage,and the Goodman equation should be introduced to correct the asymmetric stress peaks in the fatigue analysis,the fatigue performance of the 10 MW wind turbine mooring system meets the safety requirements.
关键词
风力机 /
系泊线 /
疲劳损伤 /
Goodman方程 /
非对称循环应力
Key words
floating wind turbine /
mooring lines /
fatigue damage /
Goodman equation /
asymmetric circlic stress
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邵云亮. 海洋系泊链研究和发展现状[J]. 海洋工程装备与技术, 2019, 6(3): 603-609.
SHAO Y L.Research and development progress of offshore mooring chain[J]. Ocean engineering equipment and technology, 2019, 6(3): 603-609.
[2] 刘娟, 孙政, 刘敬喜. 基于雨流计数法的锚泊线疲劳强度评估[J]. 舰船科学技术, 2016, 38(23): 59-64.
LIU J, SUN Z, LIU J X.Evaluation on fatigue strength of mooring line based on rain-flow count method[J]. Ship science and technology, 2016, 38(23): 59-64.
[3] 邓露, 吴松熊, 钟文杰, 等. 风浪夹角变化对海上浮式风机系泊的影响[J]. 土木工程与管理学报, 2018, 35(1): 1-6.
DENG L, WU S X, ZHONG W J, et al.Influence of wind-wave intersection angle change on the mooring system of floating offshore wind turbines[J]. Journal of civil engineering and management, 2018, 35(1): 1-6.
[4] 邓露, 胡缤纷, 吴松熊, 等. 气动荷载对浮式风机系泊疲劳寿命的影响分析[J]. 上海交通大学学报, 2018, 52(6): 743-749.
DENG L, HU B F, WU S X, et al.Influence of aerodynamic load on fatigue life of mooring lines of floating wind turbines[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 743-749.
[5] 董璐, 朱为全, 高巍, 等. 基于空气动力-水动力耦合分析的SPAR基础浮式风机系泊系统疲劳分析[J]. 中国海洋平台, 2019, 34(4): 30-36.
DONG L, ZHU W Q, GAO W, et al.Aerodynamic-hydrodynamic coupling mooring system fatigue analysis of SPAR offshore floating wind turbine[J]. China offshore platform, 2019, 34(4): 30-36.
[6] 刘伟, 桑松, 曹爱霞, 等. 单柱式浮式风力机动力响应及系缆疲劳评估研究[J]. 太阳能学报, 2018, 39(6): 1720-1725.
LIU W, SANG S, CAO A X, et al.Study of dynamic response of single column floating wind turbine and fatigue assessment of mooring cables[J]. Acta energiae solaris sinica, 2018, 39(6): 1720-1725.
[7] 盛景, 桑松, 曹爱霞, 等. SPAR型浮式风力机涡激特性研究及系缆疲劳评估[J]. 太阳能学报, 2019, 40(10): 2979-2985.
SHENG J, SANG S, CAO A X, et al.Vortex induced characteristics of SPAR type floating wind turbine and fatigue assessment of mooring system[J]. Acta energiae solaris sinica, 2019, 40(10): 2979-2985.
[8] 余建星, 赵岩, 余杨, 等. 基于S-N曲线和断裂力学的浮式风力机张力腿疲劳评估[J]. 太阳能学报, 2021, 42(9): 250-255.
YU J X, ZHAO Y, YU Y, et al.Fatigue assessment of tethers of FOWT based on S-N curve and fracture mechanics[J]. Acta energiae solaris sinica, 2021, 42(9): 250-255.
[9] 杜君峰, 王顺坤, 张德庆, 等. 基于神经网络模型的波候变化影响下深海系泊缆疲劳损伤评估[J]. 船舶力学, 2022, 26(8): 1189-1198.
DU J F, WANG S K, ZHANG D Q, et al.Fatigue damage assessment of deep-sea mooring lines under the influence of wave climate change based on neural network model[J]. Journal of ship mechanics, 2022, 26(8): 1189-1198.
[10] 曲晓奇. 考虑非线性几何刚度大型浮式风力机叶片动力响应分析[D]. 天津: 天津大学, 2021.
QU X Q.Dynamic response analysis of large floating offshore wind turbine blades considering nonlinear geometric stiffness[D]. Tianjin: Tianjin University, 2021.
[11] DET NORSKE VERITAS, Offshore Standard DNV-OS-E301, Position Mooring[S]. 2010.