针对锂离子电池内阻与容量增量难以建立解析模型的问题,提出一种基于机理的,以锂离子电池的电流和温度等变量为输入、以内阻和容量增量为输出的建模方法。首先,该方法基于Arrhenius公式,构建可定量描述在电流、温度等变量影响下的电压机理模型以及在电流、电压等变量影响下的Bernardi热机理模型。其次,通过所设计的有效实验解耦上述两个模型间以及变量间的耦合效应。然后,进一步推导出内阻解析模型和容量增量解析模型。实验结果表明,所提方法实验量不大且能够准确估计电池的电压、内阻以及容量增量,电压误差低于0.3‰,内阻误差低于1.2%。
Abstract
To address the difficulty of analytical modeling of the internal resistance and incremental capacity of lithium-ion batteries, this paper proposes a mechanism-based modeling method with battery current and temperature as inputs variables and the internal resistance and incremental capacity as outputs. Firstly, the method constructs a voltage mechanism model based on the Arrhenius equation, which can quantitatively describe the voltage under the influence of current, temperature and other variables, as well as a Bernardi thermal mechanism model under the influence of current, voltage and other variables. Secondly, the coupling effects between the above two models and between the variables are decoupled through well-designed experiments. Then, the analytical model for internal resistance and incremental capacity analytical model are further derived. The experimental results show that the proposed method requires minimal experimentalal effect and can accurately estimate the battery voltage, internal resistance and incremental capacity. The voltage error is lower than 0.3‰ and the internal resistance error is lower than 1.2%.
关键词
锂离子电池 /
电压测量 /
热建模 /
内阻 /
容量 /
电热耦合
Key words
lithium-ion batteries /
voltage measurement /
thermal modeling /
resistance /
capacity /
electro-thermal coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN Y J, YANG G, LIU X, et al.A time-efficient and accurate open circuit voltage estimation method for lithium-ion batteries[J]. Energies, 2019, 12(9): 1803.
[2] ZHANG Z P, MIN H T, GUO H G, et al.State of health estimation method for lithium-ion batteries using incremental capacity and long short-term memory network[J]. Journal of energy storage, 2023, 64: 107063.
[3] HU X S, FENG F, LIU K L, et al.State estimation for advanced battery management: key challenges and future trends[J]. Renewable and sustainable energy reviews, 2019, 114: 109334.
[4] 刘伟, 杨耕, 孟德越, 等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报, 2021, 36(24): 5186-5200.
LIU W, YANG G, MENG D Y, et al.Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200.
[5] 杨斌, 樊立萍, 高迎慧, 等. 超高功率密度锂离子电池放电性能及容量预估研究[J]. 太阳能学报, 2023, 44(11): 419-425.
YANG B, FAN L P, GAO Y H, et al.Reserach on discharge performance and capacity prediction of ultra-high power density lithium-ion batteries[J]. Acta energiae solaris sinica, 2023, 44(11): 419-425.
[6] 申永鹏, 孙嵩楠, 孙建彬, 等. 电流特征对锂离子电池性能的影响研究[J]. 太阳能学报, 2023, 44(6): 61-70.
SHEN Y P, SUN S N, SUN J B, et al.Research on influence of current characteristics on performance of lithium-ion battery[J]. Acta energiae solaris sinica, 2023, 44(6): 61-70.
[7] REN H L, JIA L, DANG C, et al.An electrochemical-thermal coupling model for heat generation analysis of prismatic lithium battery[J]. Journal of energy storage, 2022, 50: 104277.
[8] WANG D F, HUANG H Q, TANG Z H, et al.A lithium-ion battery electrochemical-thermal model for a wide temperature range applications[J]. Electrochimica acta, 2020, 362: 137118.
[9] WASSILIADIS N, ANK M, BACH A, et al.A systematic approach for the parameter identification of electrochemical battery models enabling health-aware fast charging control of battery electric vehicles[J]. Journal of energy storage, 2022, 56: 105951.
[10] GAN Y H, WANG J Q, LIANG J L, et al.Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells[J]. Applied thermal engineering, 2020, 164: 114523.
[11] DAN D, YAO C N, ZHANG Y J, et al.Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied thermal engineering, 2019, 162: 114183.
[12] LIN X F, PEREZ H E, MOHAN S, et al.A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of power sources, 2014, 257: 1-11.
[13] RODRÍGUEZ-ITURRIAGA P, GARCÍA V M, RODRÍGUEZ-BOLÍVAR S, et al. A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion[J]. Applied energy, 2024, 367: 123327.
[14] HOU G Q, LIU X Q, HE W X, et al.An equivalent circuit model for battery thermal management system using phase change material and liquid cooling coupling[J]. Journal of energy storage, 2022, 55: 105834.
[15] LIU W, TEH J, ALHARBI B, et al.An electric-thermal coupling modeling method for lithium-ion battery using the state of charge normalization calculation method[J]. Journal of energy storage, 2023, 72: 108724.
[16] 刘玉洁, 赵巍, 孙孝峰, 等. 储能系统锂离子电池附加受控电压源等效电路模型研究[J]. 太阳能学报, 2023, 44(8): 1-9.
LIU Y J, ZHAO W, SUN X F, et al.Equivalent circuit model of lithium-ion batteries attached controlled voltage source in energy storage system[J]. Acta energiae solaris sinica, 2023, 44(8): 1-9.
[17] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988.
CHEN Y J, YANG G, ZU H P, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3976-3988.
[18] XU X D, TANG S J, REN H H, et al.Joint state estimation of lithium-ion batteries combining improved equivalent circuit model with electrochemical mechanism and diffusion process[J]. Journal of energy storage, 2022, 56: 106135.
[19] HARIHARAN K S.A coupled nonlinear equivalent circuit-thermal model for lithium ion cells[J]. Journal of power sources, 2013, 227: 171-176.
[20] GISMERO A, NØRREGAARD K, JOHNSEN B, et al. Electric vehicle battery state of health estimation using Incremental Capacity Analysis[J]. Journal of energy storage, 2023, 64: 107110.
[21] JIANG B, DAI H F, WEI X Z.Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition[J]. Applied energy, 2020, 269: 115074.
基金
河北省教育厅科学研究项目(QN2025313); 沧州师范学院科研基金项目(XNJJLYB2021002)