风力机分段叶片螺栓连接构型失效机理研究

项家豪, 石可重, 吴鸿晖, 宋娟娟, 李庆安, 钟晓晖

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 152-161.

PDF(1888 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1888 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 152-161. DOI: 10.19912/j.0254-0096.tynxb.2024-0865

风力机分段叶片螺栓连接构型失效机理研究

  • 项家豪1~4, 石可重1~4, 吴鸿晖1~4, 宋娟娟1~4, 李庆安1~4, 钟晓晖1~4
作者信息 +

STUDY ON FAILURE MECHANISM OF BOLTED CONNECTION CONFIGURATION OF WIND TURBINE SEGMENTED BLADES

  • Xiang Jiahao1~4, Shi Kezhong1~4, Wu Honghui1~4, Song Juanjuan1~4, Li Qing'an1~4, Zhong Xiaohui1~4
Author information +
文章历史 +

摘要

为得到分段叶片螺栓连接的失效机理,对多种复合材料失效模型并进行试验与仿真比较,得到最合适的失效理论,在此基础上建立螺栓连接结构模型并进行数值模拟。结果表明:相比于Hashin和Tsai-Wu失效准则,LaRC失效准则更加适用于分段叶片螺栓连接中出现的复合材料失效情况;在螺栓加载的过程中,复合材料会更易出现失效,但其并未导致整体结构失效,后续过程中出现的螺栓失效才是导致连接结构失效的主要原因。

Abstract

To obtain the failure mechanism of the segmented blade bolt connection, failure models of various composite materials are first established and compared through experiments and simulations to obtain the most suitable failure theory. Then, on this basis, the bolt connection structure model is established and numerical simulation is carried out. The results show that: Compared with the Hashin and Tsai-Wu failure criteria, the LaRC failure criterion is more applicable to characterizing composite materials failure in bolt connections of segmented blade bolt connections; During the process of bolt loading, the composite material is more prone to failure, but it does not lead to the failure of the overall structure. The bolt failure that occurs in the subsequent process is the main cause of the failure of the connection structure.

关键词

风电机组 / 分段式叶片 / 复合材料 / 螺栓连接 / 失效机理 / 有限元仿真

Key words

wind turbine / segmented blades / composite material / bolt connection / failure mechanism / finite element simulation

引用本文

导出引用
项家豪, 石可重, 吴鸿晖, 宋娟娟, 李庆安, 钟晓晖. 风力机分段叶片螺栓连接构型失效机理研究[J]. 太阳能学报. 2025, 46(9): 152-161 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0865
Xiang Jiahao, Shi Kezhong, Wu Honghui, Song Juanjuan, Li Qing'an, Zhong Xiaohui. STUDY ON FAILURE MECHANISM OF BOLTED CONNECTION CONFIGURATION OF WIND TURBINE SEGMENTED BLADES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 152-161 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0865
中图分类号: TK83   

参考文献

[1] HALD H, KENSCHE W C.Development and tests of a light-weight GRP rotor blade for the DFVLR 100 kW WEC[C]//Proceeding of Wind Power 85.
San Francisco, CA, USA, 1985.
[2] 欧洲海上风电. GE两段式碳纤维叶片,一年内第三次断裂![EB/OL]. (2022-07-25). www.shangyexinzhi.com.
European offshore wind power. GE's two-stage carbon fiber blade broke for the third time within a year! [EB/OL]. (2022-07-25). www.shangyexinzhi.com.
[3] VIONIS P, LEKOU D, GONZALEZ F, et al.Development of a MW scale wind turbine for high wind complex terrain sites[C]//the MEGAWIND Project: Proceedings of the European Wind Energy Conference. Athens, Greece, 2006.
[4] SAENZ E, NUIN I, MONTEJO R, et al.Development and validation of a new joint system for sectional blades[J]. Wind energy, 2015, 18(3): 419-428.
[5] PEDERSEN B H,AROCENA D L R I, SOLA R R, et al. US. Patent 20090116962:Sensorised blade joint[P]. 2009.
[6] 喻光安, 秦志文, 荣晓敏, 等. 缺陷对风电叶片螺栓连接性能影响研究[J]. 太阳能学报, 2019, 40(11): 3244-3249.
YU G A, QIN Z W, RONG X M, et al.Effects of defects on connection performance for wind turbine blades[J]. Acta energiae solaris sinica, 2019, 40(11): 3244-3249.
[7] 游少雄, 羊森林, 钟贤和. 复合材料风电叶片分段组装技术发展现状[J]. 江西建材, 2019(9): 10-12, 14.
YOU S X, YANG S L, ZHONG X H.Development status of segmented assembly technology of composite wind power blade[J]. Jiangxi building materials, 2019(9): 10-12, 14.
[8] PEETERS M, SANTO G, DEGROOTE J, et al.The concept of segmented wind turbine blades: a review[J]. Energies, 2017, 10(8): 1112.
[9] MURDY P, HUGHES S, MILLER D A, et al.Static and fatigue characterization of large composite T-bolt connections in marine hygrothermal environments[J]. Journal of marine science and engineering, 2023, 11(12): 2309.
[10] 秦志文, 廖猜猜, 荣晓敏, 等. 分段连接对风电叶片与机组性能的影响[J]. 太阳能学报, 2021, 42(6): 349-355.
QIN Z W, LIAO C C, RONG X M, et al.Effects of segment connection on blade and wind turbine performance[J]. Acta energiae solaris sinica, 2021, 42(6): 349-355.
[11] 郭宏超, 高翔, 张思嘉, 等. 风力机塔筒双盖板穿芯螺栓连接疲劳性能研究[J]. 太阳能学报, 2023, 44(9): 377-383.
GUO H C, GAO X, ZHANG S J, et al.Study on fatigue properties of double-plate through-core bolted joints in wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(9): 377-383.
[12] 付之炜. 螺栓有限元模型参数化建模及多螺栓排布下松动影响因素研究[D]. 重庆: 重庆理工大学, 2023.
FU Z W.Parametric modeling of bolt finite element model and research on influencing factors of loosening under multi-bolt arrangement[D]. Chongqing: Chongqing University of Technology, 2023.
[13] ANTWI E K, LIU K, WANG H.A review on ductile mode cutting of brittle materials[J]. Frontiers of mechanical engineering, 2018, 13(2): 251-263.
[14] 黄华, 王永和, 魏泰, 等. 摩擦和常温蠕变对风电螺栓预紧力松弛的敏感性分析[J]. 太阳能学报, 2023, 44(1): 289-296.
HUANG H, WANG Y H, WEI T, et al.Sensitivity analysis of friction and room temperature creep on preload relaxation of wind turbine bolt[J]. Acta energiae solaris sinica, 2023, 44(1): 289-296.
[15] HASHIN Z.Failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(2): 329-334.
[16] PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites science and technology, 2002, 62(12/13): 1633-1662.
[17] TSAI S W.A survey of macroscopic failure criteria for composite materials[J]. Journal of reinforced plastics and composites, 1984, 3(1): 40-62.
[18] RODNEY H.A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the royal society of London series a mathematical and physical sciences, 1948, 193(1033): 281-297.
[19] PINHO S T, DÁVILA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R].NASA/TM-2005-213530, 2005.
[20] PINHO S T, DARVIZEH R, ROBINSON P, et al.Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of composite materials, 2012, 46(19/20): 2313-2341.
[21] SANDHU R S.Nonlinear behavior of unidirectional and angle ply laminates[J]. Journal of aircraft, 1976, 13(2): 104-111.
[22] CHANG F K, CHANG K Y.A progressive damage model for laminated composites containing stress concentrations[J]. Journal of composite materials, 1987, 21(9): 834-855.
[23] ABU-FARSAKH G A, ODEH I N. A new damage-based failure criterion for nonlinear behavior of fibrous composite materials[J]. International journal of damage mechanics, 2023, 32(7): 940-961.
[24] CAMUS G.Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2-D SiC/SiC[J]. International journal of solids and structures, 2000, 37(6): 919-942.
[25] 贾斐, 杨成鹏, 宋远翔. 各向异性复合材料强度失效判据综述[J]. 力学学报, 2024, 56(4): 1006-1024.
JIA F, YANG C P, SONG Y X.Review on strength failure criteria of anisotropic composite materials[J]. Chinese journal of theoretical and applied mechanics, 2024, 56(4): 1006-1024.
[26] 范沁红, 高宏伟, 楚志兵. 金属材料损伤理论模型的研究综述[J]. 太原理工大学学报, 2023, 54(2): 225-234.
FAN Q H, GAO H W, CHU Z B.Research review on the damage theoretical model of metal materials[J]. Journal of Taiyuan University of Technology, 2023, 54(2): 225-234.
[27] LEE H G, KANG M, PARK J.Fatigue failure of a composite wind turbine blade at its root end[J]. Composite structures, 2015, 133: 878-885.
[28] BENDER J J, HALLETT S R, LINDGAARD E.Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength[J]. Composite structures, 2019, 218: 39-49.

基金

超大型风电机组风轮叶片新材料新结构关键技术及应用(2023YFB4202900); 面向我国深远海6 MW级浮式风电装备多物理场耦合机制研究(52176212)

PDF(1888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/