电动汽车充电需求集中响应下光储微电网储能调度

邵非凡, 廖思阳, 范传光, 徐威, 胡晓乐

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 736-743.

PDF(1307 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1307 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 736-743. DOI: 10.19912/j.0254-0096.tynxb.2024-0872

电动汽车充电需求集中响应下光储微电网储能调度

  • 邵非凡1, 廖思阳2, 范传光3, 徐威3, 胡晓乐4
作者信息 +

ENERGY STORAGE SCHEDULING IN PHOTOVOLTAIC-STORAGE AND MICROGRID UNDER CENTRALIZED RESPONSE TO ELECTRIC VEHICLE CHARGING DEMAND

  • Shao Feifan1, Liao Siyang2, Fan Chuanguang3, Xu Wei3, Hu Xiaole4
Author information +
文章历史 +

摘要

设计一种考虑电动汽车需求集中响应的光储微电网储能调度方法。综合考虑光储微电网的组成结构和工作原理,分析充电需求集中响应下光储微电网的影响因素。在电动汽车需求集中响应下,根据分析结果从储能输出、需求响应、功率平衡等方面设置调度约束条件。通过储能量和电动汽车电能需求量的求解,得出储能调度量的计算结果。根据结果规划调度方法,完成光储微电网的储能调度工作。实验结果表明:与传统调度方法相比,在充电需求集中响应下,电动汽车的充电量和充电速度平均值分别达到52.3 kWh和89.6 kW/h,同时光储微电网的均衡度得到明显提升。

Abstract

An energy storage scheduling method for photovoltaic-storage microgrids is designed, taking into account the concentrated response of electric vehicle (EV) charging demand. The composition structure and operating principles of photovoltaic-storage microgrids are comprehensively considered, and the influencing factors on photovoltaic-storage microgrids under concentrated EV charging demand response are analysed. Based on the analysis results in the context of concentrated EV charging demand response, scheduling constraints are set from aspects such as energy storage output, demand response, and power balance. Through the calculation of energy storage capacity and EV electricity demand, the results for energy storage scheduling quantities are obtained. Based on these results, a scheduling method is planned to accomplish the energy storage scheduling tasks for photovoltaic-storage microgrids. Experimental results indicate that, compared with traditional scheduling methods, under concentrated charging demand response, the average charging capacity and charging speed of electric vehicles reached 52.3 kWh and 89.6 kWh, respectively, while the balance degree of the photovoltaic-storage microgrid is significantly improved.

关键词

电动汽车 / 光储微电网 / 储能调度 / 需求集中响应 / 约束条件 / 调度路线

Key words

electric vehicle / photovoltaic-storage microgrid / energy storage dispatching / centralized demand response / constraints / dispatching route

引用本文

导出引用
邵非凡, 廖思阳, 范传光, 徐威, 胡晓乐. 电动汽车充电需求集中响应下光储微电网储能调度[J]. 太阳能学报. 2025, 46(9): 736-743 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0872
Shao Feifan, Liao Siyang, Fan Chuanguang, Xu Wei, Hu Xiaole. ENERGY STORAGE SCHEDULING IN PHOTOVOLTAIC-STORAGE AND MICROGRID UNDER CENTRALIZED RESPONSE TO ELECTRIC VEHICLE CHARGING DEMAND[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 736-743 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0872
中图分类号: TM732   

参考文献

[1] 张巍, 王丹. 基于云边协同的电动汽车实时需求响应调度策略[J]. 电网技术, 2022, 46(4): 1447-1458.
ZHANG W, WANG D. Real-time demand response scheduling strategy for electric vehicles based on cloud edge collaboration[J]. Power system technology, 2022, 46(4): 1447-1458.
[2] 罗凡, 李建锦, 余向前, 等. 基于能源区块链网络的微电网共享储能调度模型[J]. 沈阳工业大学学报, 2023, 45(6): 625-630.
LUO F, LI J J, YU X Q, et al. Shared energy storage and scheduling model of microgrid based on energy blockchain network[J]. Journal of Shenyang University of Technology, 2023, 45(6): 625-630.
[3] JING Y Q, WANG H L, HU Y J, et al.A grid-connected microgrid model and optimal scheduling strategy based on hybrid energy storage system and demand-side response[J]. Energies, 2022, 15(3): 1060.
[4] TIAN G Z, ZHENG Y D, LIU G C, et al.SOC balancing and coordinated control based on adaptive droop coefficient algorithm for energy storage units in DC microgrid[J]. Energies, 2022, 15(8): 2943.
[5] 包文俊, 葛敏, 袁毅, 等. 计及需求响应的风光储独立微电网技术经济优化[J]. 太阳能学报, 2024, 45(5): 343-350.
BAO W J, GE M, YUAN Y, et al. Techno-economic optimization of wind/photovoltaic/storage independent microgrid considering demand response[J]. Acta energiae solaris sinica, 2024, 45(5): 343-350.
[6] 南斌, 董树锋, 唐坤杰, 等. 考虑需求响应和源荷不确定性的光储微电网储能优化配置[J]. 电网技术, 2023, 47(4): 1340-1352.
NAN B, DONG S F, TANG K J, et al. Optimal configuration of energy storage in PV-storage microgrid considering demand response and uncertainties in source and load[J]. Power system technology, 2023, 47(4): 1340-1352.
[7] 刘又榕, 林顺富, 沈运帷, 等. 计及电动汽车参与多元需求响应的微电网多时间尺度优化调度模型[J]. 电力建设, 2023, 44(10): 51-62.
LIU Y R, LIN S F, SHEN Y W, et al. Multi-time-scale optimization scheduling model of microgrid with electric vehicles participating in multiple demand response[J]. Electric power construction, 2023, 44(10): 51-62.
[8] 吴宣儒, 李萍. 考虑电动汽车及需求侧响应的综合能源系统优化调度[J]. 科学技术与工程, 2022, 22(9): 3585-3593.
WU X R, LI P. Optimal dispatch of integrated energy system including electric vehicles and electric and heat demand-side response[J]. Science technology and engineering, 2022, 22(9): 3585-3593.
[9] 邢毓华, 任甜甜. 改进MOPSO在微电网优化调度中的应用研究[J]. 太阳能学报, 2024, 45(6): 191-200.
XING Y H, REN T T. Application research of improved mopso in microgrid optimal dispatch[J]. Acta energiae solaris sinica, 2024, 45(6): 191-200.
[10] 颜湘武, 王庆澳, 卢俊达, 等. 计及电动汽车和柔性负荷的微电网能量调度[J]. 电力系统保护与控制, 2023, 51(17): 69-79.
YAN X W, WANG Q A, LU J D, et al. Microgrid energy scheduling with electric vehicles and flexible loads[J]. Power system protection and control, 2023, 51(17): 69-79.
[11] 肖朝霞, 张可信, 冯冀. 含电动汽车充电站的风/光/柴独立微电网分层优化调度[J]. 天津工业大学学报, 2022, 41(4): 61-74.
XIAO Z X, ZHANG K X, FENG J. Hierarchical optimal dispatching of wind/PV/diesel islanded microgrid with EVs charging station[J]. Journal of Tiangong University, 2022, 41(4): 61-74.
[12] 李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58(1): 9-21.
LI Q, ZOU X L, PU Y C, et al. Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21.
[13] 王育飞, 陈强, 郑云平, 等. 基于动态无功电压灵敏度的有源配电网移动式储能优化调度[J]. 电力自动化设备, 2023, 43(2): 29-35, 59.
WANG Y F, CHEN Q, ZHENG Y P, et al. Optimal scheduling of mobile energy storage in active distribution network based on dynamic reactive power and voltage sensitivity[J]. Electric power automation equipment, 2023, 43(2): 29-35, 59.
[14] 闫丽梅, 曾家威, 徐建军, 等. 含电动汽车和光伏的配电网演化动态博弈调度策略[J]. 太阳能学报, 2024, 45(5): 316-323.
YAN L M, ZENG J W, XU J J, et al. Scheduling strategy of distribution grid with electric vehicles and photolatic based on evolutionary dynamics game[J]. Acta energiae solaris sinica, 2024, 45(5): 316-323.
[15] 方颖聪, 莫春兰, 党玉荣, 等. 微电网与压缩空气储能系统的多能流协同调度[J]. 广西大学学报(自然科学版), 2023, 48(3): 605-615.
FANG Y C, MO C L, DANG Y R, et al. Multi-energy flow coordinated dispatching of microgrid and compressed air storage system[J]. Journal of Guangxi University (natural science edition), 2023, 48(3): 605-615.

基金

国网湖北省电力有限公司基金(SGHBJY00PSJS2310094)

PDF(1307 KB)

Accesses

Citation

Detail

段落导航
相关文章

/