高温固体蓄热装置充热特性研究与优化

刘旭, 徐立军, 刘佳佳, 丑鹏, 王刚

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 342-350.

PDF(4910 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4910 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 342-350. DOI: 10.19912/j.0254-0096.tynxb.2024-0881

高温固体蓄热装置充热特性研究与优化

  • 刘旭1, 徐立军2, 刘佳佳3, 丑鹏4, 王刚2
作者信息 +

STUDY AND OPTIMIZATION OF CHARGING CHARACTERISTICS OF HIGH-TEMPERATURE SOLID HEAT STORAGE DEVICE

  • Liu Xu1, Xu Lijun2, Liu Jiajia3, Chou Peng4, Wang Gang2
Author information +
文章历史 +

摘要

以高温固体蓄热装置的典型蓄热单元为研究对象,基于蓄热单元典型充热特性,揭示传统结构的蓄热单元存在的传热缺陷,并针对该缺陷对蓄热单元的充热过程开展优化研究。结果表明,传统结构的蓄热单元在充热8 h后,蓄热砖内部存在显著的温度不均匀现象,内部温差最高达到约60 K。电加热丝的空间位置对蓄热单元内部温度分布的均匀性有显著影响,在3组不同尺寸的蓄热单元内均出现随电加热丝位置逐渐下移,温度均匀性逐渐变差的现象,当电加热丝位于空气流道中间位置时,蓄热单元内部最大温差仅为20 K。充热过程中,辐射换热为主要换热方式,最大约占总换热功率的95%。空气流道体积占比越大,蓄热单元温度均匀性越好,储能密度越低。

Abstract

The high-temperature solid heat storage device is made up of many heat storage units. Before investigating the whole heat storage device, the thermal characteristics of the unit should be revealed. In this paper, the heat transfer defect inside the heat storage device is revealed after analyzing its thermal characteristics. After 8 h of charging, the maximum temperature difference is about 60 K. The charging characteristic is influenced by the position of the heating element significantly. In 3 cases, the temperature distribution becomes worse as the heating element moves down. The heat storage unit has a minimum temperature difference of 20 K when the heating element is placed at the center of the unit. During charging, the radiation is the main heat transfer method, about 95% of heat is transferred by radiation. The air path volume proportion of the unit also influences the thermal characteristics. To get better temperature distribution, the proportion should be larger. But to get higher energy storage density, the proportion should be lower.

关键词

固体蓄热 / 辐射换热 / 温度均匀性 / 共享储能 / 储能密度 / 仿真优化

Key words

solid sensible heat storage / radiative heat transfer / temperature uniformity / shared energy storage / energy storage density / simulation-based optimization

引用本文

导出引用
刘旭, 徐立军, 刘佳佳, 丑鹏, 王刚. 高温固体蓄热装置充热特性研究与优化[J]. 太阳能学报. 2025, 46(9): 342-350 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0881
Liu Xu, Xu Lijun, Liu Jiajia, Chou Peng, Wang Gang. STUDY AND OPTIMIZATION OF CHARGING CHARACTERISTICS OF HIGH-TEMPERATURE SOLID HEAT STORAGE DEVICE[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 342-350 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0881
中图分类号: TK02   

参考文献

[1] 许佳孟, 毛凌波, 黄金, 等. 电制热高温相变储热装置的蓄放热性能研究[J]. 太阳能学报, 2023, 44(8): 39-44.
XU J M, MAO L B, HUANG J, et al.Research on heat storage and release performance of high temperature phase change heat storage device for electric heating[J]. Acta energiae solaris sinica, 2023, 44(8): 39-44.
[2] 丁明, 刘新宇, 解蛟龙, 等. 面向提高风电接纳能力的多区域热-电联合调度模型[J]. 中国电机工程学报, 2017, 37(14): 4079-4088, 4287.
DING M, LIU X Y, XIE J L, et al.Research on heat and electricity coordinated dispatch model of multi-area for improving wind power accommodation ability[J]. Proceedings of the CSEE, 2017, 37(14): 4079-4088, 4287.
[3] 胡自锋, 段振云, 徐耀祖, 等. 固体蓄热器放热过程模拟分析与实验研究[J]. 太阳能学报, 2023, 44(6): 71-77.
HU Z F, DUAN Z Y, XU Y Z, et al.Simulation analysis and experimental study on exothermic process of solid accumulator[J]. Acta energiae solaris sinica, 2023, 44(6): 71-77.
[4] 刘豫亳, 谢丽蓉, 彭维, 等. 计及弃风消纳的储电-蓄热协同优化控制研究[J]. 太阳能学报, 2023, 44(4): 276-282.
LIU Y B, XIE L R, PENG W, et al.Research on cooperative optimal control of electricity storage and heat storage considering abandoned wind consumption[J]. Acta energiae solaris sinica, 2023, 44(4): 276-282.
[5] 王振浩, 杨璐, 田春光, 等. 考虑风电消纳的风电-电储能-蓄热式电锅炉联合系统能量优化[J]. 中国电机工程学报, 2017, 37(S1): 137-143.
WANG Z H, YANG L, TIAN C G, et al.Energy optimization for combined system of wind-electric energy storage-regenerative electric boiler considering wind consumption[J]. Proceedings of the CSEE, 2017, 37(S1): 137-143.
[6] 胡晓, 杨岑玉, 陈雷, 等. 外置电阻式固体蓄热结构热应力建模与分析[J]. 储能科学与技术, 2019, 8(2): 333-337.
HU X, YANG C Y, CHEN L, et al.A finite element analysis of thermal stress in an external resistant based regenerator[J]. Energy storage science and technology, 2019, 8(2): 333-337.
[7] 邢作霞, 赵海川, 葛维春, 等. 固态电热储能系统热力计算方法研究[J]. 太阳能学报, 2019, 40(2): 513-521.
XING Z X, ZHAO H C, GE W C, et al.Study on thermodynamic calculation method of soild state electric energy storage system[J]. Acta energiae solaris sinica, 2019, 40(2): 513-521.
[8] 董佳仪. 固体电蓄热装置内流动与传热耦合分析[D]. 沈阳: 沈阳工业大学, 2019.
DONG J Y.Coupling analysis of flow and heat transfer in solid electric heat storage system[D]. Shenyang: Shenyang University of Technology, 2019.
[9] 徐涛. 基于多物理场耦合的固体电制热元件结构优化研究[D]. 沈阳: 沈阳工业大学, 2022.
XU T.Structural optimization research of solid electric heating element based on multi-physics coupling[D]. Shenyang: Shenyang University of Technology, 2022.
[10] 樊金鹏, 田艳丰, 邢作霞, 等. 氧化镁耐火材料的蓄热应用[C]//第十六届全国耐火材料青年学术报告会论文集. 营口, 2018: 336-340.
FAN J P, TIAN Y F, XING Z X, et al.Application of magnesia refractory materials in heat storage[C]//Proceedings of the 16th National Youth Academic Conference on Refractory Materials. Yingkou, 2018: 336-340.
[11] 刘庆超, 张清远, 许霞. 蓄热电锅炉在风电限电地区进行调峰蓄能的可行性分析[J]. 华电技术, 2012, 34(9): 75.
LIU Q C, ZHANG Q Y, XU X.Analysis on feasibility of heat storing electric boiler application for energy storage and peak shaving to increase utilization rate of wind power capacity[J]. Huadian technology, 2012, 34(9): 75.
[12] 侴爱辉, 赵伟. 一种电热固体蓄热装置蓄热过程的数值模拟[J]. 节能技术, 2011, 29(5): 424-441.
CHOU A H, ZHAO W.Numerical simulation of one kind of electric heat solid heat storage device heat storage process[J]. Energy conservation technology, 2011, 29(5): 424-441.
[13] ZHANG X Y, ZHAO M, LIU L, et al.Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger[J]. Construction and building materials, 2020, 265: 120340.
[14] LV Y J, ZHOU W B, YANG Z J, et al.Characterization and numerical simulation on heat transfer performance of inorganic phase change thermal storage devices[J]. Applied thermal engineering, 2016, 93: 788-796.
[15] PIZZOLATO A, SHARMA A, MAUTE K, et al.Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage[J]. International journal of heat and mass transfer, 2017, 113: 875-888.
[16] TIARI S, QIU S G.Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes[J]. Energy conversion and management, 2015, 105: 260-271.
[17] 杨小平. 高温相变蓄热过程流动与传递规律[D]. 广州: 华南理工大学, 2012.
YANG X P.The flow and transport mechanism for high temperature phase-change thermal storage processes[D]. Guangzhou: South China University of Technology, 2012.

基金

混合型共享储能与热电联产能源梯次利用技术研发项目(2022B01018-1); 新疆维吾尔自治区自然科学基金(2022D01B137)

PDF(4910 KB)

Accesses

Citation

Detail

段落导航
相关文章

/