面向海上灯浮标供电的波流耦合链式发电装置

张继军, 张翔宇, 宋永欣

太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 238-247.

PDF(2409 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2409 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (9) : 238-247. DOI: 10.19912/j.0254-0096.tynxb.2024-0883

面向海上灯浮标供电的波流耦合链式发电装置

  • 张继军1, 张翔宇2, 宋永欣2
作者信息 +

WAVE-CURRENT COUPLED CHAIN GENERATOR FOR OFFSHORE BUOY NAVIGATION LIGHT

  • Zhang Jijun1, Zhang Xiangyu2, Song Yongxin2
Author information +
文章历史 +

摘要

针对海上灯浮标日益增加的能耗需求问题,设计一种可同时收集海面波浪能和海流能的水下链式发电装置,建立发电装置的运动和输出电压模型,数值模拟研究发电装置元器件结构与运动参数对其发电性能的影响,合理确定发电装置中弹簧刚度和平面励磁阵列结构,并进行实验验证。结果表明,相同波流耦合激励下,励磁阵列的运动幅值随弹簧的刚度增加而减小,输出电压随励磁阵列的运动频率和振幅的增加而增大。当锚链的摆动幅值和频率分别为142.70 mm和0.85 Hz时,发电装置(励磁阵列的尺寸(长×宽×高)为50 mm×20 mm×50 mm)具有5.02 V的平均电压幅值和0.024 mW/cm3的最大空载功率密度,可实现对低频波流能量的收集与转换,并为海上灯浮标提供电力。

Abstract

In response to the increasing energy consumption demands of offshore buoy navigation lights, this paper proposes a submerged chain generator capable of simultaneously harnessing wave and tidal energy in the marine environment. The motion and output voltage models of the generator are established, and numerical simulations are conducted to study the effects of component structure and motion parameters on its power generation performance. The stiffness of the springs and the planar excitation array structure in the generator are reasonably determined and experimentally verified. The results show that, under the same wave-current coupled excitation, the motion magnitude of the array decreases with the increase in the stiffness of the springs. The output voltage also increases with the increase in the motion frequency and magnitude of the array. When the swing magnitude and frequency of the anchor chain are 142.70 mm and 0.85 Hz, respectively, the power generation device (array dimensions: length × width × height=50 mm×20 mm × 50 mm) achieves an average voltage magnitude of 5.02 V and a maximum no-load power density of 0.024 mW/cm3, enabling the collection and conversion of low-frequency wave and current energy and providing power for offshore buoy navigation lights.

关键词

浮标 / 波浪能装置 / 水力发电机 / 波流耦合 / 链式发电装置 / 波浪能

Key words

buoy / wave energy conversion / marine current generators / wave-current coupled / anchor chain generator / wave power

引用本文

导出引用
张继军, 张翔宇, 宋永欣. 面向海上灯浮标供电的波流耦合链式发电装置[J]. 太阳能学报. 2025, 46(9): 238-247 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0883
Zhang Jijun, Zhang Xiangyu, Song Yongxin. WAVE-CURRENT COUPLED CHAIN GENERATOR FOR OFFSHORE BUOY NAVIGATION LIGHT[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 238-247 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0883
中图分类号: TK01   

参考文献

[1] 李鹏, 江恩祝, 王思荐, 等. 海上警戒浮标实时监控系统[J]. 海洋工程, 2016, 34(6): 131-136.
LI P, JIANG E Z, WANG S J, et al.Real-time monitoring system of alert buoys for offshore observation[J]. The ocean engineering, 2016, 34(6): 131-136.
[2] 吴金明, 陈妮, 钱晨. 惯性式波浪能供电浮标的液压能量转换系统设计研究[J]. 机械工程学报, 2022, 58(4): 222-231.
WU J M, CHEN N, QIAN C.Research on design method of the hydraulic energy conversion system of inertial wave-energy-powered buoy[J]. Journal of mechanical engineering, 2022, 58(4): 222-231.
[3] 丁士圻, 郭丽华, 秦世军, 等. 一种新型多功能海洋浮标[J]. 海洋工程, 2005, 23(3): 90-93.
DING S Q, GUO L H, QIN S J, et al.Multi-purpose ocean observing buoy[J]. The ocean engineering, 2005, 23(3): 90-93.
[4] MCLEOD I, RINGWOOD J V.Powering data buoys using wave energy: a review of possibilities[J]. Journal of ocean engineering and marine energy, 2022, 8(3): 417-432.
[5] 张亚群, 李显豪, 盛松伟, 等. 波浪能供电观测浮标防腐方案设计及仿真[J]. 太阳能学报, 2024, 45(2): 213-217.
ZHANG Y Q, LI X H, SHENG S W, et al.Design and simulation of anticorrosion scheme of observation buoy for wave power plant[J]. Acta energiae solaris sinica, 2024, 45(2): 213-217.
[6] 席林通, 李醒飞, 宋龙江, 等. 南海海域波浪能资源模拟评估[J]. 可再生能源, 2021, 39(4): 561-568.
XI L T, LI X F, SONG L J, et al.Simulative evaluation of wave energy resources in the South China Sea[J]. Renewable energy resources, 2021, 39(4): 561-568.
[7] 孙海, 白旭. 基于流致振动的海流能发电技术及研究现状[J]. 船舶工程, 2023, 45(1): 18-26.
SUN H, BAI X.Current status of ocean current energy power generation technology based on flow-induced vibration[J]. Ship engineering, 2023, 45(1): 18-26.
[8] 刘家瑞, 张海成, 周潇, 等. 非线性铰接浮体波能转换器的动力学特性研究[J]. 海洋工程, 2023, 41(5): 57-69.
LIU J R, ZHANG H C, ZHOU X, et al.Dynamic characteristics of nonlinear articulated floating body wave energy converter[J]. The ocean engineering, 2023, 41(5): 57-69.
[9] 万勇, 冯晓顺, 程秋薇, 等. 中国南海海洋牧场的波浪能资源评估[J]. 太阳能学报, 2024, 45(10): 691-698.
WAN Y, FENG X S, CHENG Q W, et al.Assessment of wave energy resources in marine pastures in South China Sea[J]. Acta energiae solaris sinica, 2024, 45(10): 691-698.
[10] 王群峰, 薛钢, 秦健, 等. 内置偏心摆式波浪能发电装置运动响应分析[J]. 太阳能学报, 2024, 45(10): 710-716.
WANG Q F, XUE G, QIN J, et al.Motion response study of inner eccentric pendulum wave energy converter[J]. Acta energiae solaris sinica, 2024, 45(10): 710-716.
[11] 毛垚飞, 朱克强, 夏峰, 等. 海洋浮标发电装置优先工况选择的动力学分析[J]. 中国航海, 2017, 40(3): 54-57, 102.
MAO Y F, ZHU K Q, XIA F, et al.Dynamic analysis for selection of preferable operating mode for conversion device of ocean buoys[J]. Navigation of China, 2017, 40(3): 54-57, 102.
[12] SONG C H, ZHU X, WANG M L, et al.Recent advances in ocean energy harvesting based on triboelectric nanogenerators[J]. Sustainable energy technologies and assessments, 2022, 53: 102767.
[13] WANG H Y, WU W M, CUI L, et al.A new wave energy converter for marine data buoy[J]. IEEE transactions on industrial electronics, 2023, 70(2): 2076-2084.
[14] AHMED A, WANG Y N, AZAM A, et al.Design of an S-shaped point-absorber wave energy converter with a non-linear PTO to power the satellite-respondent buoys in the East China Sea[J]. Ocean engineering, 2023, 275: 114162.
[15] 李云飞, 耿江军, 汤添益, 等. 面向新能源浮标的平面摆式波浪能收集装置研究[J]. 机械工程学报, 2021, 57(12): 275-284.
LI Y F, GENG J J, TANG T Y, et al.Study on water wave energy harvester for clean energy buoys[J]. Journal of mechanical engineering, 2021, 57(12): 275-284.
[16] SIM J H, AHN D G, KIM D Y, et al.Three-dimensional equivalent magnetic circuit network method for precise and fast analysis of PM-assisted claw-pole synchronous motor[J]. IEEE transactions on industry applications, 2018, 54(1): 160-171.
[17] CAI W Z, ROUSSINOVA V, STOILOV V.Piezoelectric wave energy harvester[J]. Renewable energy, 2022, 196: 973-982.
[18] LI Y F, GUO Q Y, HUANG M J, et al.Study of an electromagnetic ocean wave energy harvester driven by an efficient swing body toward the self-powered ocean buoy application[J]. IEEE access, 2019, 7: 129758-129769.
[19] FENG W W, CHEN H Y, ZOU Q P, et al.A contactless coupled pendulum and piezoelectric wave energy harvester: model and experiment[J]. Energies, 2024, 17(4): 876.
[20] CHEN S E, YANG R Y, WU G K, et al.A piezoelectric wave-energy converter equipped with a geared-linkage-based frequency up-conversion mechanism[J]. Sensors, 2021, 21(1): 204.
[21] 姜先策, 孙双双. 基于弹簧振子的简谐振动图像演示实验的改进设计与制作[J]. 科技视界, 2019(32): 23, 25.
JIANG X C, SUN S S. The application of Polaroid light in engineering[J]. Science & technology vision, 2019(32): 23, 25.
[22] ZHOU Q, JI B, HU F M, et al.Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication[J]. Advanced functional materials, 2022, 32(46): 2208120.
[23] WANG T, ZHOU Z X.Analytical solution of magnetic field distribution in brushless permanent magnet machines with rotor axis deflection[J]. IEEE transactions on magnetics, 2015, 51(4): 8202606.
[24] XU X Y, HUANG Z, LI W, et al.3D finite element modelling on racetrack coils using the homogeneous T-a formulation[J]. Cryogenics, 2021, 119: 103366.
[25] 戈宝军, 杨子豪, 陶大军, 等. 计及磁路分布特性的电磁轴承解析模型建立与支撑性能影响因素研究[J]. 电工技术学报, 2023, 38(8): 2025-2035, 2085.
GE B J, YANG Z H, TAO D J, et al.Establishment of analytical model of active magnetic bearing considering magnetic circuit distribution characteristics and study on influencing factors of support performance[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2025-2035, 2085.

基金

国家自然科学基金(51979019)

PDF(2409 KB)

Accesses

Citation

Detail

段落导航
相关文章

/