通过实验和模拟仿真获得高速公路边坡光伏组件现场积灰规律以及表面积灰对光伏组件运行效率的影响规律,建立高速公路边坡光伏组件清洁周期优化模型。结果表明:边坡光伏积灰密度随暴露时间的累积而增大,但积灰速率随时间的累积逐渐降低。当积灰密度从0增长到2、4、6、8、10 g/m2时,光伏组件运行效率从21.1%分别降至17.4%、14.7%、11.2%、10.0%、8.4%。在山东省金乡县冬季28 d连续不降水的周期内,对高速公路边坡光伏组件开展1次清洁能带来0.48元/kW的最大清洁净收益。
Abstract
The laws of dust accumulation on the PV modules on highway slopes and the influence of the dust accumulation on the operating efficiency of the PV modules are obtained by experiments and simulation, as well as the optimization model of the cleaning cycle of the PV on the highway slope is established. The results show that the dust accumulation density on the PV modules on highway slopes increases with the increase over time, but the dust accumulation rate decreases with the increase over time. When the dust accumulation density increase from 0 to 2, 4, 6, 8, 10 g/m2, the operating efficiency of the PV modules decrease from 21.1% to 17.4%, 14.7%, 11.2%, 10.0%, 8.4%, respectively. During a period of 28 days without precipitation in winter in Jinxiang County, Shandong Province, the highest net benefit of the cleaning of the PV on the highway slope is 0.48 RMB/kW by carrying out 1 cleaning operation.
关键词
光伏发电 /
灰尘 /
光伏组件 /
清洁 /
高速公路边坡 /
优化
Key words
PV power /
dust /
PV modules /
cleaning /
highway slopes /
optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 新华社. 中共中央国务院. 中共中央国务院印发《国家综合立体交通网规划纲要》. [2021.02.24]. https://www.gov.cn/zhengce/2021-02/24/content_5588654.htm
[2] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2024[J]. 中国公路学报, 2024, 37(3): 1-81.
Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research: 2024[J]. China journal of highway and transport, 2024, 37(3): 1-81.
[3] 董侨, 李家旺, 顾兴宇, 等. 基于APSO算法的公路光伏声屏障储充系统优化[J]. 中国公路学报, 2023, 36(12): 236-248.
DONG Q, LI J W, GU X Y, et al. Capacity optimization of PV battery charging system using APSO algorithm[J]. China journal of highway and transport, 2023, 36(12): 236-248.
[4] ZHANG K, CHEN M, YANG Y, et al.Quantifying the photovoltaic potential of highways in China[J]. Applied energy, 2022, 324: 119600.
[5] 贾利民, 马静, 吉莉, 等. 中国陆路交通能源融合的形态、模式与解决方案[M]. 北京: 科学出版社, 2020.
JIA L M, MA J, JI L, et al. Scenarios, patterns and solutions of ground transportation and energy convergence in China[M]. Beijing: Science Press, 2020.
[6] 赵子雪, 王洪革, 冉德影. “双碳” 背景下交通运输行业电能相关技术及应用[J]. 山东交通科技, 2023(4): 134-136.
ZHAO Z X, WANG H G, RAN D Y, et al. Electricity related technologies and applications in the transportation industry under the“double carbon” background[J]. Journal of Shandong transportation science and technology, 2023(4): 134-136.
[7] 温岩, 赵东, 袁春红, 等. 积尘对光伏系统发电的影响研究综述[J]. 太阳能, 2014(11): 36-41.
WEN Y, ZHAO D, YUAN C H, et al. A review of studies on the effect of dust accumulation on power generation in PV systems[J]. Solar energy, 2014(11): 36-41.
[8] AZOUZOUTE A, HAJJAJ C, ZITOUNI H, et al.Modeling and experimental investigation of dust effect on glass cover PV module with fixed and tracking system under semi-arid climate[J]. Solar energy materials and solar cells, 2021, 230: 111219.
[9] 宁会峰, 程荣展, 王伟志, 等. 积灰对光伏发电的影响及除尘效果实验研究[J]. 太阳能学报, 2020, 41(11): 120-125.
NING H F, CHENG R Z, WANG W Z, et al. Experimental study on influence of dust accumulation on photovoltaic power generation and dust removal effect[J]. Acta energiae solaris sinica, 2020, 41(11): 120-125.
[10] PAUDYAL B R, SHAKYA S R.Dust accumulation effects on efficiency of solar PV modules for off grid purpose: a case study of Kathmandu[J]. Solar energy, 2016, 135: 103-110.
[11] WANG A, XUAN Y M.Close examination of localized hot spots within photovoltaic modules[J]. Energy conversion and management, 2021, 234: 113959.
[12] 陈宇翔, 崔凝, 李斌, 等. 积灰性质对光伏组件输出性能影响研究[J]. 太阳能学报, 2024, 45(1): 11-19.
CHEN Y X, CUI N, LI B, et al. Research on effect of dust deposition properties on output performance of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(1): 11-19.
[13] MAJEED R, WAQAS A, SAMI H, et al.Experimental investigation of soiling losses and a novel cost-effective cleaning system for PV modules[J]. Solar energy, 2020, 201: 298-306.
[14] HAMMOUD M, SHOKR B, ASSI A, et al.Effect of dust cleaning on the enhancement of the power generation of a coastal PV-power plant at Zahrani Lebanon[J]. Solar energy, 2019, 184: 195-201.
[15] ULLAH A, AMIN A, HAIDER T, et al.Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan[J]. Renewable energy, 2020, 150: 456-468.
[16] 姚磊, 付豪, 马科飞, 等. 高速公路边坡光伏组件表面灰尘粘附性能研究[J]. 太阳能学报, 2024, 45(4): 460-467.
YAO L, FU H, MA K F, et al. Performance study of dust adhesion of PV module surfaces on highway slope[J]. Acta energiae solaris sinica, 2024, 45(4): 460-467.
[17] HUANG P L, HU G Q, MA K F, et al.Effect of calcium sulphate dihydrate on dust adhesion on photovoltaic panel surfaces under condensation[J]. Journal of cleaner production, 2023, 429: 139659.
[18] ČABO F G, MARINIĆ-KRAGIĆ I, GARMA T, et al.Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation[J]. Energy, 2021, 230: 120785.
[19] LI Q X, ZHU L, SUN Y, et al.Performance prediction of building integrated photovoltaics under no-shading, shading and masking conditions using a multi-physics model[J]. Energy, 2020, 213: 118795.
[20] 金胜利, 郭振兴, 干建丽, 等. 光伏电站组件清洁技术研究综述[J]. 能源工程, 2023, 43(5): 1-11.
JIN S L, GUO Z X, GAN J L, et al. Review of research on cleaning technology of the PV module in photovoltaic power stations[J]. Energy engineering, 2023, 43(5): 1-11.
基金
中国能建交能融合重大科技专项(CEEC2021-KJZX-08-1); 国家自然科学基金(51975235)