针对太阳能富集区建筑外墙在低温强辐射双热扰下表现的动态传热特性,为高效优化保温设计,以拉萨地区为例,利用动态传热数值计算模型分析热阻与热惰性指标的变化对复合外墙热响应特性的影响,构建三者之间的Poly2D、LogNormal2D与Plane函数关系式,揭示南、北向外墙的内表面温度在热阻与热惰性指标综合影响下的变化规律,并根据该规律提出墙体热阻最小值和热惰性指标的匹配关系建议,为太阳能富集区围护结构热工性能的优化设计提供快速便捷的参数优化指导。
Abstract
For the dynamic heat transfer characteristics of building external walls in solar-enriched areas under the dual thermal disturbances between low temperature and intense solar radiance, it is necessary to efficiently optimize the thermal insulation design in winter. Taking Lhasa as an example, this study uses a dynamic heat transfer numerical calculation model to analyze the influence of the change of thermal resistance and thermal inertia index on the thermal response characteristics of composite external walls. After that, the functional relationship expressions among these three factors, namely Poly2D, LogNormal2D, and Plane, were constructed, and the variations patterns of the interior surface temperature of the south and north facing external walls were revealed under the combined influence of thermal resistance and thermal inertia index. On this basis, the matching relationship suggestions between the minimum thermal resistance and thermal inertia index of external walls were proposed. The findings obtained in this study can provide rapid and convenient parameter optimization guidance for the optimized design of the thermal performance of building envelopes in solar-enriched areas.
关键词
动态分析 /
太阳能 /
保温 /
蓄热 /
热工性能指标
Key words
dynamic analysis /
solar energy /
thermal insulation /
heat storage /
thermal performance indices
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VERICHEV K, ZAMORANO M, FUENTES-SEPÚLVEDA A, et al. Adaptation and mitigation to climate change of envelope wall thermal insulation of residential buildings in a temperate oceanic climate[J]. Energy and buildings, 2021, 235: 110719.
[2] 刘加平, 谢静超. 广义建筑围护结构热工设计原理与方法[J]. 建筑科学, 2022, 38(8): 1-8.
LIU J P, XIE J C.Generalized principle and method of thermal design for building envelopes[J]. Building science, 2022, 38(8): 1-8.
[3] 李贺. 建筑非透明围护结构与玻璃幕墙对太阳能有效利用的研究[D]. 上海: 东华大学, 2021.
LI H.Investigation on the effective utilization of solar energy by non-transparent envelope and double skin facade [D]. Shanghai: Donghua University, 2021.
[4] ADITYA L, MAHLIA T M I, RISMANCHI B, et al. A review on insulation materials for energy conservation in buildings[J]. Renewable and sustainable energy reviews, 2017, 73: 1352-1365.
[5] WU J, BAI G L, ZHAO H Y, et al.Mechanical and thermal tests of an innovative environment-friendly hollow block as self-insulation wall materials[J]. Construction and building materials, 2015, 93: 342-349.
[6] 张涛, 张琪玮, 买亚锋. 传统民居青海庄窠的气候适应性研究[J]. 太阳能学报, 2021, 42(8): 1-6.
ZHANG T, ZHANG Q W, MAI Y F.Study on climate adaptability of traditional zhuangke dwellings in Qinghai[J]. Acta energiae solaris sinica, 2021, 42(8): 1-6.
[7] 朱新荣, 冯伟建, 梁嘉, 等. 一种墙体蓄热量的评价方法研究[J]. 太阳能学报, 2024, 45(1): 67-72.
ZHU X R, FENG W J, LIANG J, et al.Evaluation method study on heat storage capacity of building envelopes[J]. Acta energiae solaris sinica, 2024, 45(1): 67-72.
[8] GB 50176—2016, 民用建筑热工设计规范[S].
GB 50176—2016, Code for thermal design of civil building[S].
[9] 赵金玲, 李杰, 党伟康. 热惰性指标对围护结构热稳定性量化作用机制[J]. 哈尔滨工业大学学报, 2018, 50(10): 182-188.
ZHAO J L, LI J, DANG W K.Quantitative mechanism of thermal inertia index on thermal stability of building envelope[J]. Journal of Harbin Institute of Technology, 2018, 50(10): 182-188.
[10] 畅明. 川西藏区低能耗居住建筑热工优化研究[D]. 西安: 长安大学, 2019.
CHANG M.Study on thermal optimization of low energy consumption residential buildings in Tibetan district of Sichuan province[D]. Xi'an: Changan University, 2019.
[11] 朱新荣, 梁嘉, 邱杨, 等. 外保温复合墙体热惰性指标修正研究[J]. 太阳能学报, 2023, 44(3): 482-488.
ZHU X R, LIANG J, QIU Y, et al.Revising study on thermal inertia index according to external insulation composite wall[J]. Acta energiae solaris sinica, 2023, 44(3): 482-488.
[12] LI Z R, XIE Y J, ZHAO Q.Thermal design method of building wall considering solar energy utilization and thermal insulation[J]. Energy and buildings, 2022, 257: 111772.
[13] ASAN H.Numerical computation of time lags and decrement factors for different building materials[J]. Building and environment, 2006, 41(5): 615-620.
[14] ZHANG S, YANG L, SUONAM B, et al.Method for dynamic thermal insulation design revealing almost real heat transfer characteristics of building envelopes in different Chinese regions[J]. Energy and buildings, 2022, 274: 112419.
[15] 桑国臣, 陈得勇, 韩艳, 等. 双热扰下节能墙体对室内热环境的动态影响[J]. 太阳能学报, 2017, 38(1): 164-171.
SANG G C, CHEN D Y, HAN Y, et al.Influence of energy-saving wall on indoor thermal environment under the condition of bilateral thermal disturbance[J]. Acta energiae solaris sinica, 2017, 38(1): 164-171.
基金
“十四五”国家重点研发计划(2022YFC3802700); 国家自然科学基金面上项目(52078419)