采用Sunsolve光学模拟和Quokka3器件模拟,研究电池膜层结构、膜层材料和膜层厚度、正面接触电阻、硅片电阻率和正面细栅中心间距对HJT太阳电池光电性能的影响。基于常规的HJT太阳电池,背面采用MgFx/Ag背反射器,同时正背面ITO的厚度减薄至12 nm,提高背面的长波反射,降低背面寄生吸收。正面将高寄生吸收的nc-Si:H(n)/ITO设置在栅线下方,非栅线区域采用高透明的SiNx/SiOx叠层减反膜,显著降低正面寄生吸收和前表面反射,电池短路电流提高1.63 mA/cm2,达到41.75 mA/cm2。采用模拟优化的正面细栅中心间距为1.25 mm,电阻率为1 Ω·cm,正面接触电阻为0.2 mΩ·cm2的设计,实现效率27%的局域钝化接触HJT太阳电池的设计。对比常规的HJT太阳电池,效率提高0.97%,同时正背面减薄的ITO设计降低了HJT太阳电池的制备成本。
Abstract
In this work, the optical simulation by Sunsolve and device simulation by Quokka3 are used to investigate the effects of cell structure, film material and film thickness, front contact resistance, wafer resistivity, and front finger pitch on the optical and electrical performance of HJT cells. Compared with the conventional HJT solar cell, the MgFx/Ag back reflector and the thin ITO of 12 nm are used on the back side, improving reflection at long wavelengths and reducing parasitic absorption on the backside. On the front side, the nc-Si: H(n)/ITO contact regions with high parasitic absorption are limited below the fingers, while a highly transparent SiNx/SiOx stack is used in the passivated regions, which significantly reduces the parasitic absorption and external reflection on the front side, and increases the cell JSC by 1.63 mA/cm2, reaching 41.75 mA/cm2. By using the optimized front finger pitch of 1.25 mm, resistivity of 1 Ω·cm, and front ρc of 0.2 mΩ·cm2, localized passivated contact HJT solar cells with an efficiency of 27% are achieved. Compared with conventional HJT solar cells, the efficiency is improved by 0.97%, while the front and back thin ITO design reduces the fabrication cost of HJT cells.
关键词
太阳电池 /
晶体硅 /
异质结 /
光电设计 /
局域接触 /
模拟计算
Key words
solar cells /
silicon /
heterojunction /
optoelectronic design /
local contact /
simulated calculation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IBARRA MICHEL J, DRÉON J, BOCCARD M, et al. Carrier-selective contacts using metal compounds for crystalline silicon solar cells[J]. Progress in photovoltaics: research and applications, 2023, 31(4): 380-413.
[2] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al. Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[3] LIN H, YANG M, RU X N, et al.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature energy, 2023, 8(8): 789-799.
[4] RICHTER A, MÜLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature energy, 2021, 6(4): 429-438.
[5] BOCCARD M, ANTOGNINI L, CATTIN J, et al.Loss analysis of a 24.4%-efficient front-junction silicon heterojunction solar cell and opportunity for localized contacts[J]. IEEE journal of photovoltaics, 2023, 13(5): 663-671.
[6] 杨煜豪, 刘文柱, 张丽平, 等. 晶硅异质结太阳电池nc-Si: H/nc-SiOx: H叠层窗口层研究[J]. 太阳能学报, 2023, 44(8): 203-207.
YANG Y H, LIU W Z, ZHANG L P, et al. Research on nc-Si:H/nc-SiOx:H stacked thin films as silicon heterojunction solar cell window layer[J]. Acta energiae solaris sinica, 2023, 44(8): 203-207.
[7] 王梦笑, 王光红, 赵雷, 等. 用于晶硅异质结太阳电池的透明导电薄膜研究进展[J]. 太阳能学报, 2023, 44(11): 16-22.
WANG M X, WANG G H, ZHAO L, et al. Research progress of TCO films for silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2023, 44(11): 16-22.
[8] HOLMAN Z C, FILIPIČ M, DESCOEUDRES A, et al.Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells[J]. Journal of applied physics, 2013, 113(1): 013107.
[9] DUAN W Y, LAMBERTZ A, BITTKAU K, et al.A route towards high-efficiency silicon heterojunction solar cells[J]. Progress in photovoltaics: research and applications, 2022, 30(4): 384-392.
[10] PV LIGHTHOUSE, Sunsolve, https://www.pvlighthouse.com.au/sunsolve-power, 2024-03-14.
[11] PADUTHOL A, JUHL M K, NOGAY G, et al.Measuring carrier injection from amorphous silicon into crystalline silicon using photoluminescence[J]. Progress in photovoltaics: research and applications, 2018, 26(12): 968-973.
[12] HOLMAN Z C, DESCOEUDRES A, BARRAUD L, et al.Current losses at the front of silicon heterojunction solar cells[J]. IEEE journal of photovoltaics, 2012, 2(1): 7-15.
[13] ANDREAS F, Quokka3, https://www.quokka3.com/, 2024-03-24.
[14] MCINTOSH K R, KHO T C, FONG K C, et al.Quantifying the optical losses in back-contact solar cells[C]//2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). Denver, CO, USA, 2014: 115-123.
基金
国家自然科学基金(62025403; U23A20354); 浙江省科技厅领雁计划项目(2022C01215; 2024C01092)