塔式太阳能电站定日镜场光学建模与优化设计

魏秀东, 雷响, 张亚南, 余强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 326-332.

PDF(1326 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1326 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 326-332. DOI: 10.19912/j.0254-0096.tynxb.2024-0920

塔式太阳能电站定日镜场光学建模与优化设计

  • 魏秀东1, 雷响1, 张亚南2, 余强3
作者信息 +

MODELING AND OPTIMIZATION DESIGN OF HELIOSTAT FIELD IN SOLAR POWER TOWER PLANTS

  • Wei Xiudong1, Lei Xiang1, Zhang Ya’nan2, Yu Qiang3
Author information +
文章历史 +

摘要

研究塔式太阳能光热电站定日镜场布局方法和光学效率计算理论,提出无挡光圆弧交错布局优化设计新方法,建立定日镜场光学模型,验证定日镜场光学模型的正确性。以西班牙Gemasolar电站为例,采用新设计方法重新设计定日镜场,分析定日镜场的光学性能,与原镜场相比,新镜场年均光学效率由61.62%提高到63.14%,镜场年最大光学效率由66.87%提高到68.45%,镜场密度由20.42%提高到27.36%,镜场光学性能得到提升,验证了新设计方法的可行性。

Abstract

The layout methods and optical efficiency calculation theory of the heliostat field in the solar power tower plant were investigated. A new optimization and design method based on no-blocking radial stagger layout was proposed. An optical model of heliostat field was established and validated. The heliostat field of the Gemasolar power plant in Spain was redesigned by usingthe new optimization method The optical performance of the heliostat field was analyzed.Comparing to the original heliostat field, the annual average optical efficiency of the new heliostat field is increased from 61.62% to 63.14%, and the annual maximum optical efficiency is increased from 66.87% to 68.45%. Furthermore, the heliostat field density is improved from 20.42% to 27.36%. The optical performance of the heliostat field is enhanced. The feasibility of the new optimization and design method is validated.

关键词

塔式太阳能热发电站 / 定日镜场 / 光学效率 / 优化布局 / 太阳位置 / 塔式太阳能热发电

Key words

solar power tower station / heliostat field / optical efficiency / optimized layout / sun position / solar power tower generation

引用本文

导出引用
魏秀东, 雷响, 张亚南, 余强. 塔式太阳能电站定日镜场光学建模与优化设计[J]. 太阳能学报. 2025, 46(10): 326-332 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0920
Wei Xiudong, Lei Xiang, Zhang Ya’nan, Yu Qiang. MODELING AND OPTIMIZATION DESIGN OF HELIOSTAT FIELD IN SOLAR POWER TOWER PLANTS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 326-332 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0920
中图分类号: TM615   

参考文献

[1] 吕子奎, 房方. 基于能量流的塔式太阳能热发电吸热器动态建模[J]. 太阳能学报, 2022, 43(6): 132-137.
LYU Z K, FANG F.Dynamic modeling of solar tower receiver based on energy flow[J]. Acta energiae solaris sinica, 2022, 43(6): 132-137.
[2] RIZVI A A, DANISH S N, EL-LEATHY A, et al.A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar energy, 2021, 218: 296-311.
[3] N.R.E.L. Gemasolar thermosolar plant solar tres. [EB/OL]. Gemasolar Thermosolar Plant / Solar TRES | Concentrating Solar Power Projects | NREL,2022.
[4] LIPPS F W, VANT-HULL L L. A cellwise method for the optimization of large central receiver systems[J]. Solar energy, 1978, 20(6): 505-516.
[5] KISTLER B L.A user's manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants[M]. Albuquerque: Sandia National Laboratories, 1991.
[6] SIALA F M F, ELAYEB M E. Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J]. Renewable energy, 2001, 23(1): 77-92.
[7] WAGNER M J, WENDELIN T.SolarPILOT: a power tower solar field layout and characterization tool[J]. Solar energy, 2018, 171: 185-196.
[8] COLLADO F J, GUALLAR J.Campo: generation of regular heliostat fields[J]. Renewable energy, 2012, 46: 49-59.
[9] COLLADO F J, GUALLAR J.Quick design of regular heliostat fields for commercial solar tower power plants[J]. Energy, 2019, 178: 115-125.
[10] NOONE C J, TORRILHON M, MITSOS A.Heliostat field optimization: a new computationally efficient model and biomimetic layout[J]. Solar energy, 2012, 86(2): 792-803.
[11] ZHANG M L, YANG L J, XU C, et al.An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout[J]. Renewable energy, 2016, 87: 720-730.
[12] DENG L B, WU Y R, GUO S, et al.Rose pattern for heliostat field optimization with a dynamic speciation-based mutation differential evolution[J]. International journal of energy research, 2020, 44(3): 1951-1970.
[13] HU P, HUANG W D.Performance analysis and optimization of an integrated azimuth tracking solar tower[J]. Energy, 2018, 157: 247-257.
[14] DELLIN T A, FISH M J, YANG C L .User’s manual for DELSOL2: A computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants[M]. Albuquerque: Sandia National Laboratories, 1981.
[15] 高博, 孙浩, 刘盛. 基于改进鲸鱼算法的太阳能热发电站镜场优化布置[J]. 太阳能学报, 2023, 44(10): 209-217.
GAO B, SUN H, LIU S.Heliostat field layout optimization of solar tower power station based on improved whale algorithm[J]. Acta energiae solaris sinica, 2023, 44(10): 209-217.
[16] ATIF M, AL-SULAIMAN F A. Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm[J]. Energy conversion and management, 2015, 95: 1-9.
[17] SINGHAI R, BANKER N D, SINHMAR H, et al.Effect of aspect ratio of heliostats on the optical efficiency of solar tower power plant-an experimental analysis[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2024, 46(1): 7174-7191.
[18] WEI X D, LU Z W, WANG Z F, et al.A new method for the design of the heliostat field layout for solar tower power plant[J]. Renewable energy, 2010, 35(9): 1970-1975.
[19] SCHWARZBZL P, PITZ-PAAL R, SCHMITZ M. Visual HFLCAL-A Software Tool for Layout and Optimisation of Heliostat Fields[C]//Proceedings of the ASME2009 3rd International Conference on Energy Sustainability, San Francisco, 2009: 869-876. 2009.

基金

国家自然科学基金面上项目(52376219)

PDF(1326 KB)

Accesses

Citation

Detail

段落导航
相关文章

/