基于明暗恢复形状法的非接触式波浪测量研究

栾雪涛, 李正农, 余昊, 邓勤犁, 吴红华

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 13-22.

PDF(1890 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1890 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 13-22. DOI: 10.19912/j.0254-0096.tynxb.2024-0934

基于明暗恢复形状法的非接触式波浪测量研究

  • 栾雪涛1, 李正农1, 余昊1, 邓勤犁2, 吴红华1
作者信息 +

STUDY ON NON-CONTACT WAVE MEASUREMENT BASED ON SHAPE-FROM-SHADING METHOD

  • Luan Xuetao1, Li Zhengnong1, Yu Hao1, Deng Qinli2, Wu Honghua1
Author information +
文章历史 +

摘要

为实现简易、低成本的海面波浪实时测量,提出一种基于明暗恢复形状法(SFS)的非接触式波浪参数测量方法。首先利用单目相机获取水槽波浪以及浮球参照物图像信息,然后基于SFS法分别对波面以及参照物表面的三维形状进行恢复,并将尺寸变换系数引入到波面三维形状恢复结果中,进而根据三维重建结果提出波浪参数计算方法,最后将波浪参数测量结果与实际测量结果进行对比分析。结果表明该方法测得的平均波高、平均波长与实际值间的相对误差均小于5%,平均周期的相对误差均小于1%,且平均波向与实际波向的差距均在5°以内,具有较高的稳定性与准确性。

Abstract

To achieve a simple and low-cost real-time measurement of sea waves, this article proposes a non-contact wave parameter measurement method based on shape-from-shading (SFS). Initially, a single camera is used to capture images of the wave tank and floating reference objects. Then, the three-dimensional shapes of the wave surface and reference objects are reconstructed using the SFS method. A size transformation coefficient is introduced into the 3D reconstruction results to accurately calculate wave parameters. The proposed method's wave parameter measurements are compared with actual measurements. Results indicate that the relative errors for average wave height and wavelength are less than 5%, the relative error for the average period is less than 1%, and the deviation in wave direction is within 5°. This method demonstrates high stability and accuracy.

关键词

波浪能 / 波长 / 三维重建 / 明暗恢复形状法 / 尺寸变换系数 / 图像处理 / 光学测量

Key words

wave power / wavelength / 3D reconstruction / shape-from-shading / size transformation coefficient / image processing / optical measurement

引用本文

导出引用
栾雪涛, 李正农, 余昊, 邓勤犁, 吴红华. 基于明暗恢复形状法的非接触式波浪测量研究[J]. 太阳能学报. 2025, 46(10): 13-22 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0934
Luan Xuetao, Li Zhengnong, Yu Hao, Deng Qinli, Wu Honghua. STUDY ON NON-CONTACT WAVE MEASUREMENT BASED ON SHAPE-FROM-SHADING METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 13-22 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0934
中图分类号: P743.2   

参考文献

[1] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[2] 夏海南, 王项南, 李强, 等. 波浪能发电装置现场测试中波浪参数比测分析[J]. 太阳能学报, 2022, 43(6): 251-255.
XIA H N, WANG X N, LI Q, et al.Comparison and analysis of wave parameters in field test of wave energy converters[J]. Acta energiae solaris sinica, 2022, 43(6): 251-255.
[3] FURUSAWA M, INUKAI S.The great east Japan earthquake (2011): using the one health approach to minimise the impact on the livestock industry and human health[J]. Revue scientifique et technique (international office of epizootics), 2019, 38(1): 103-111.
[4] 左其华. 现场波浪观测技术发展和应用[J]. 海洋工程, 2008, 26(2): 124-139.
ZUO Q H.Advances and applications of ocean wave measurement technology[J]. The ocean engineering, 2008, 26(2): 124-139.
[5] 姜波, 丁杰, 方舣洲, 等. 涠洲岛海洋风能和波浪能资源评估[J]. 太阳能学报, 2023, 44(10): 461-466.
JIANG B, DING J, FANG Y Z, et al.Offshore wind energy and wave energy resource valuation in Weizhou island[J]. Acta energiae solaris sinica, 2023, 44(10): 461-466.
[6] 周阳, 叶钦, 杨斌, 等. 基于AWAC的三门湾海域波浪分布特征分析[J]. 太阳能学报, 2021, 42(10): 387-393.
ZHOU Y, YE Q, YANG B, et al.Analysis of wave distribution characteristics in Sanmen bay based on AWAC[J]. Acta energiae solaris sinica, 2021, 42(10): 387-393.
[7] WASEDA T, SINCHI M, KIYOMATSU K, et al.Deep water observations of extreme waves with moored and free GPS buoys[J]. Ocean dynamics, 2014, 64(9): 1269-1280.
[8] BOUFERROUK A, SAULNIER J B, SMITH G H, et al.Field measurements of surface waves using a 5-beam ADCP[J]. Ocean engineering, 2016, 112: 173-184.
[9] HOU Y D, WEN B Y, TIAN Y W, et al.Study on Bragg and non-Bragg scattering mechanism and frequency shifts from time-varying periodic water wave[J]. IEEE transactions on antennas and propagation, 2018, 66(11): 6255-6264.
[10] 许媛媛, 梁书秀, 毕小奇, 等. 基于图像测速的波浪破碎两相速度场测量方案探讨[J]. 海洋通报, 2022, 41(1): 92-101.
XU Y Y, LIANG S X, BI X Q, et al.Discussion on the improved measurement scheme of wave breaking velocity fields based on image velocimetry[J]. Marine science bulletin, 2022, 41(1): 92-101.
[11] BENETAZZO A, FEDELE F, GALLEGO G, et al.Offshore stereo measurements of gravity waves[J]. Coastal engineering, 2012, 64: 127-138.
[12] DE VRIES S, HILL D F, DE SCHIPPER M A, et al. Remote sensing of surf zone waves using stereo imaging[J]. Coastal engineering, 2011, 58(3): 239-250.
[13] 李蔚. 基于立体视觉与LSPIV的河流水动力过程近距遥感测量系统[D]. 杭州: 浙江大学, 2016.
LI W.Near-field remote sensing of riverine hydrodynamic processes with 3D large scale particle image velocimetry[D]. Hangzhou: Zhejiang University, 2016.
[14] HORN B K P. Understanding image intensities[J]. Artificial intelligence, 1977, 8(2): 201-231.
[15] ZHENG Q, CHELLAPPA R.Estimation of illuminant direction, albedo, and shape from shading[C]//Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 1991: 540-545.
[16] TANKUS A, SOCHEN N, YESHURUN Y.Shape-from-shading under perspective projection[J]. International journal of computer vision, 2005, 63(1): 21-43.
[17] 陈喆. 有限条件下单帧光谱影像三维重构研究[D]. 武汉: 武汉大学, 2013.
CHEN Z.3D reconstruction using single multi-spectral imagery under limited conditions[D]. Wuhan: Wuhan University, 2013.
[18] FU G, ZHANG Q, SONG C F, et al.Specular highlight removal for real-world images[J]. Computer graphics forum, 2019, 38(7): 253-263.

基金

海南省科技计划三亚崖州湾科技城联合项目(2021CXLH0024)

PDF(1890 KB)

Accesses

Citation

Detail

段落导航
相关文章

/