为研究复杂山地地形光伏场区域风特性,以某实际光伏场地为研究对象,基于Blender+地理信息系统(GIS)对复杂地形进行快速建模,利用ANSYS有限元软件进行计算流体动力学数值模拟,并通过设置两种不同的计算范围,量化性确定复杂山地地形在不同风工况下的风特征以及光伏支架设计时应考虑的风速修正系数。结果表明:复杂山地地形的近地层风电场分布具有高度的非均匀性。各场地所在区域的最大风速修正系数主要是在西北风(315°)作用下产生,与气象报告数据基本一致。将在数值模拟中获得的风电场数据应用Python自动化处理,最终得到实际施工场地的最不利风向和相应的风速修正系数建议取值。
Abstract
In order to study the impact of complex mountainous terrain on the regional wind field of photovoltaic (PV) farms, an actual PV site is taken as the research object, and the complex terrain is quickly modeled based on Blender+GIS.Numerical simulation of computational fluid dynamics is carried out using ANSYS finite element software, and by setting two different calculation ranges, quantitatively determines the wind field characteristics of the complex mountainous terrain under different wind conditions as well as the wind speed correction coefficients that should be taken into account in the design of photovoltaic mounts.The results show that the distribution of the near-surface wind field in complex mountainous terrain is highly non-uniform.The maximum wind speed correction factor for the area in which each site is located occurs primarily when the wind is from the northwest (315°) and is generally consistent with the weather report data. The wind farm data obtained in the numerical simulation are applied Python automated processing, and finally the most unfavorable wind direction and the corresponding wind speed correction coefficient suggested values for the actual construction site are obtained.
关键词
光伏 /
风速 /
数值模拟 /
修正系数 /
复杂山地 /
最不利风向角
Key words
photovoltaics /
wind speed /
computer simulation /
correction coefficient /
complex terrain /
most unfavorable wing angle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张珍珍, 吕清泉, 张健美. “双碳” 目标下分布式光伏发电技术的研究进展及展望[J]. 太阳能, 2023(1): 17-21.
ZHANG Z Z, LYU Q Q, ZHANG J M.Research progress and prospect of distributed PV power generation technology under the goal of emission peak and carbon neutrality[J]. Solar energy, 2023(1): 17-21.
[2] 邓敏, 陈振. 基于PVsyst的山地光伏系统设计与优化[J]. 能源与节能, 2021(4): 14-16.
DENG M, CHEN Z.Design and optimization of mountain photovoltaic system based on PVsyst[J]. Energy and energy conservation, 2021(4): 14-16.
[3] 郭涛, 杨渊茗, 孙震, 等. 光伏组件柔性拖曳结构与传统刚性结构风振响应对比[J]. 太阳能学报, 2024, 45(10): 317-325.
GUO T, YANG Y M, SUN Z, et al.Comparison of wind vibration response of flexible dragging support structure and traditional rigid support structure of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(10): 317-325.
[4] 郭涛, 杨渊茗, 黄国强, 等. 山区峡谷地形下柔性支撑光伏阵列的风振特性研究[J]. 太阳能学报, 2023, 44(11): 131-140.
GUO T, YANG Y M, HUANG G Q, et al.Wind-induced vibration analysis of flexible photovoltaic support structure under mountain canyon terrain[J]. Acta energiae solaris sinica, 2023, 44(11): 131-140.
[5] 钱媛媛, 王永杰, 杨雪晶. 光伏与“光伏+水务” 在污水处理厂的应用现状[J]. 工业水处理, 2022, 42(6): 40-50.
QIAN Y Y, WANG Y J, YANG X J.Application status of photovoltaic technology and “photovoltaic + water” in wastewater treatment plant[J]. Industrial water treatment, 2022, 42(6): 40-50.
[6] LYSTAD T M, FENERCI A, ØISETH O.Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design[J]. Journal of wind engineering and industrial aerodynamics, 2018, 179: 558-573.
[7] 高亮, 白桦, 刘健新, 等. 复杂地形条件下的西部强风特性实测分析[J]. 西安理工大学学报, 2018, 34(1): 61-67.
GAO L, BAI H, LIU J X, et al.Field measurement analysis of wind characteristics of the typical complex terrain conditions in the west area[J]. Journal of Xi’an University of Technology, 2018, 34(1): 61-67.
[8] SONG J L, LI J W, FLAY R G J. Field measurements and wind tunnel investigation of wind characteristics at a bridge site in a Y-shaped valley[J]. Journal of wind engineering and industrial aerodynamics, 2020, 202: 104199.
[9] 李林敏, 杨青, 潘航平. 动态风工况下复杂地形风电场流场多尺度仿真[J]. 太阳能学报, 2022, 43(11): 179-185.
LI L M, YANG Q, PAN H P.Multiscale flow simulation of complex terrain wind farm under unsteady wind[J]. Acta energiae solaris sinica, 2022, 43(11): 179-185.
[10] MURALI A, RAJAGOPALAN R G.Numerical simulation of multiple interacting wind turbines on a complex terrain[J]. Journal of wind engineering and industrial aerodynamics, 2017, 162: 57-72.
[11] DHUNNY A Z, LOLLCHUND M R, RUGHOOPUTH S D D V. Wind energy evaluation for a highly complex terrain using computational fluid dynamics (CFD)[J]. Renewable energy, 2017, 101: 1-9.
[12] YAN B W, LI Q S.Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains[J]. Energy conversion and management, 2016, 117: 351-366.
[13] 李磊, 张立杰, 张宁, 等. FLUENT在复杂地形风场精细模拟中的应用研究[J]. 高原气象, 2010, 29(3): 621-628.
LI L, ZHANG L J, ZHANG N, et al.Application of FLUENT on the fine-scale simulation of the wind field over complex terrain[J]. Plateau meteorology, 2010, 29(3): 621-628.
[14] 肖仪清, 李朝, 欧进萍, 等. 复杂地形风能评估的CFD方法[J]. 华南理工大学学报(自然科学版), 2009, 37(9): 30-35.
XIAO Y Q, LI C, OU J P, et al.CFD approach to evaluation of wind energy in complex terrain[J]. Journal of South China University of Technology (natural science edition), 2009, 37(9): 30-35.
[15] 周继, 王新国, 刘志文, 等. 大跨度山区桥梁风特性数值模拟及试验研究[J]. 铁道科学与工程学报, 2022, 19(4): 995-1003.
ZHOU J, WANG X G, LIU Z W, et al.Numerical simulation and experimental study on wind characteristics of long span bridge in mountainous area[J]. Journal of railway science and engineering, 2022, 19(4): 995-1003.
基金
国家自然科学基金(52208204); 陕西省自然科学基金(2023-JC-YB-333; 2024SF-YBXM-653)