基于儒可夫斯基变换的潮流能水轮机翼型设计

王世明, 汪毓莹, 喻卓轩, 赵秀玲

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 23-29.

PDF(1319 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1319 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 23-29. DOI: 10.19912/j.0254-0096.tynxb.2024-0950

基于儒可夫斯基变换的潮流能水轮机翼型设计

  • 王世明1, 汪毓莹1, 喻卓轩1, 赵秀玲2
作者信息 +

RESEARCH ON TIDAL STREAM TURBINE AIRFOIL DESIGN BASED ON JOUKOWSKI TRANSFORMATION

  • Wang Shiming1, Wang Yuying1, Yu Zhuoxuan1, Zhao Xiuling2
Author information +
文章历史 +

摘要

针对低流速工况下小型潮流能水轮机翼型的快速设计问题,提出一种基于儒可夫斯基变换和高斯回归模型的水动力性能预测方法。选取儒可夫斯基翼型作为初始翼型,采用型函数/类函数变换(CST)的参数化方法对翼型外形进行拟合,并通过Fluent数值模拟得到低流速工况下的升力和阻力;基于升力、阻力和CST参数,结合机器学习中的高斯过程回归建立水动力性能预测模型。实验得出升力和阻力预测模型的平均误差率低于0.2%,均方根误差低于3%。研究表明,该方法在低流速工况水轮机翼型快速设计中具有显著的精度和效率优势。

Abstract

This paper presents a hydrodynamic performance prediction method based on Joukowski transformation and Gaussian process regression for rapid airfoil design of small-scale tidal stream turbines operating in low-velocity conditions. A set of Joukowski airfoils were selected as initial profiles and fitted using CST parameterization method. The lift and drag forces under low-velocity conditions were obtained through Fluent numerical simulation. A hydrodynamic performance prediction model was established by combining lift, drag, CST parameters with Gaussian process regression based on machine learning. Experimental results show that the average error rates of lift and drag prediction models are below 0.2%, with root mean square errors less than 3%.

关键词

潮流能 / 水轮机 / 保角变换 / CST参数化 / 高斯过程回归 / 翼型设计

Key words

tidal power / turbines / conformal mapping / CST parameterization / Gaussian process regression / airfoil design

引用本文

导出引用
王世明, 汪毓莹, 喻卓轩, 赵秀玲. 基于儒可夫斯基变换的潮流能水轮机翼型设计[J]. 太阳能学报. 2025, 46(10): 23-29 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0950
Wang Shiming, Wang Yuying, Yu Zhuoxuan, Zhao Xiuling. RESEARCH ON TIDAL STREAM TURBINE AIRFOIL DESIGN BASED ON JOUKOWSKI TRANSFORMATION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 23-29 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0950
中图分类号: TK730   

参考文献

[1] 褚景春, 贾法勇. 中国海洋潮流能发电技术与装备现状、新的机遇与挑战[J]. 太阳能学报, 2024, 45(8): 668-674.
CHU J C, JIA F Y.Present situation, new opportunities and challenges of ocean tidal current energy power generation technology and equipment in China[J]. Acta energiae solaris sinica, 2024, 45(8): 668-674.
[2] LIGHTHILL M J.A new method of two-dimensional aerodynamic design[R]. London: Aeronautical Research Council, 1945.
[3] 关萍, 薛晓锋, 付岚岚. 风洞试验及其在结构风工程中的应用[J]. 山西建筑, 2005, 31(16): 71-72.
GUAN P, XUE X F, FU L L.Wind tunnel experimemnt and the applicatton in the structure wind endineering[J]. Shanxi architecture, 2005, 31(16): 71-72.
[4] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
WANG F J.Computational fluid dynamics analysis: principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004.
[5] 刘葳兴, 刘磊, 崔琳, 等. 潮流能水平轴水轮机流场分析[J]. 太阳能学报, 2023, 44(9): 468-475.
LIU W X, LIU L, CUI L, et al.Flow field analysis of tidal energy horizontal axis turbines[J]. Acta energiae solaris sinica, 2023, 44(9): 468-475.
[6] EPPLER R, SOMERS D M.A computer program for the design and analysis of low-speed airfoils supplement[R]. America: NASA Technical Memorandum, 1980.
[7] GILES M, DRELA M.A two-dimensional transonic aerodynamic design method[C]//4th Applied Aerodynamics Conference. San Diego, CA, USA, 1986: 1793.
[8] DRELA M.XFOIL: an analysis and design system for low Reynolds number airfoils[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989: 1-12.
[9] 阎超, 谢磊, 李云晓, 等. 翼型的气动最优化设计方法和反设计方法[J]. 空气动力学学报, 1999, 17(1): 60-67.
YAN C, XIE L, LI Y X, et al.Optimum method and inverse method for aerodynamic design of airfoil[J]. Acta aerodynamica sinica, 1999, 17(1): 60-67.
[10] 李秀娟, 廖文和, 刘浩. 基于翼型反设计的遗传算法[J]. 南京航空航天大学学报, 2007, 39(2): 263-266.
LI X J, LIAO W H, LIU H.Genetic algorithms based on airfoil inverse design[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 263-266.
[11] 孙美建, 詹浩. 基于全局信息的粒子群算法翼型综合优化设计[J]. 航空学报, 2010, 31(11): 2166-2173.
SUN M J, ZHAN H.Synthesis airfoil optimization by particle swarm optimization based on global information[J]. Acta aeronautica et astronautica sinica, 2010, 31(11): 2166-2173.
[12] 王宏亮, 席光. 多目标优化设计方法在翼型气动优化中的应用研究[J]. 工程热物理学报, 2008, 29(7): 1129-1132.
WANG H L, XI G.Investigation of multi-objective optimization method on airfoil design[J]. Journal of engineering thermophysics, 2008, 29(7): 1129-1132.
[13] RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for machine learning (adaptive computation and machine learning)[M]. Cambrige, MA: The MIT Press, 2005.
[14] 闫国启. 基于多输出高斯过程回归的翼型快速设计[D]. 南京: 南京航空航天大学, 2013.
YAN G Q.Fast airfoil design based on multi-output Gaussian process regression[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[15] 单志辉, 刘学军, 吕宏强. 高斯过程回归在翼型气动性能快速评估中的应用[C]//探索创新交流(第4集)——第四届中国航空学会青年科技论坛. 北京, 2010: 178-185.
SHAN Z H, LIU X J, LYU H Q.Application of Gaussian process regression to Fast Aerodynamic Performance Evaluation of airfoil[C]//Exploration, Innovation, Exchange (Part 4): Proceedings of the 4th Youth Science and Technology Forum of the Chinese Society of Aeronautics and Astronautics. Beijing, 2010: 178-185.
[16] 徐亚峰, 刘学军, 吕宏强. 基于CST参数化方法的翼型快速设计[J]. 航空计算技术, 2011, 41(5): 24-29, 33.
XU Y F, LIU X J, LYU H Q.Fast airfoil design based on CST parameterization[J]. Aeronautical computing technique, 2011, 41(5): 24-29, 33.
[17] 姜海波, 程忠庆, 赵云鹏. 翼型型线的参数表达式探讨[J]. 机械设计与制造, 2015(3): 69-72.
JIANG H B, CHENG Z Q, ZHAO Y P.Study on parameter expressions of airfoil contour[J]. Machinery design & manufacture, 2015(3): 69-72.
[18] 张晓东, 林梦, 龚彦, 等. 基于儒可夫斯基变换的涡轮钻具叶片设计及性能分析[J]. 中国机械工程, 2020, 31(8): 968-974.
ZHANG X D, LIN M, GONG Y, et al.Design and performance analysis of turbodrill blade based on joukowski transformation[J]. China mechanical engineering, 2020, 31(8): 968-974.
[19] 蒋大为, 王自然. 复杂曲面的B样条拟合方法[J]. 航空计算技术, 1999, 29(2): 23-26.
JIANG D W, WANG Z R.Modelling of complex surface by B-spline[J]. Aeronautical computing technique, 1999, 29(2): 23-26.
[20] 张扬, 白俊强, 朱军, 等. 改进Hicks-Henne型函数法在翼型参数化中的应用[J]. 飞行力学, 2011, 29(5): 35-38.
ZHANG Y, BAI J Q, ZHU J, et al.Application of improved Hicks-Henne shape function to airfoil parameterization[J]. Flight dynamics, 2011, 29(5): 35-38.
[21] KULFAN B.A universal parametric geometry representation method-“CST”[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2007: 62.
[22] 王方成, 刘玉敏, 崔庆安. 基于高斯过程回归的混合型参数建模及优化[J]. 统计与决策, 2023, 39(1): 34-39.
WANG F C, LIU Y M, CUI Q A.Hybrid parameter modeling and optimization based on Gaussian process regression[J]. Statistics & decision, 2023, 39(1): 34-39.
[23] 张强, 缪维跑, 刘青松, 等. 基于多目标遗传算法的垂直轴风力机专用翼型优化设计[J]. 太阳能学报, 2023, 44(4): 9-16.
ZHANG Q, MIAO W P, LIU Q S, et al.Optimal design of vertical axis wind turbine special airfoil based on multi-objective genetic algorithm[J]. Acta energiae solaris sinica, 2023, 44(4): 9-16.

基金

国家自然科学基金(41976194); 上海市“科技创新行动计划”软科学研究项目(23692102600); 上海市“科技创新行动计划”上海工程技术研究中心(19DZ2254800)

PDF(1319 KB)

Accesses

Citation

Detail

段落导航
相关文章

/