计入齿根裂纹与切片耦合效应的风电齿轮-轴承耦合系统动态特性分析

杨书益, 谭建军, 朱才朝, 周烨, 李成武, 廖波

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 605-617.

PDF(5206 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5206 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 605-617. DOI: 10.19912/j.0254-0096.tynxb.2024-0967

计入齿根裂纹与切片耦合效应的风电齿轮-轴承耦合系统动态特性分析

  • 杨书益1, 谭建军1, 朱才朝1, 周烨1, 李成武1, 廖波2
作者信息 +

DYNAMIC CHARACTERISTICS ANALYSIS OF WIND TURBINE GEAR-BEARING SYSTEMS CONSIDERING EFFECTS OF TOOTH ROOT CRACKS AND SLICING COUPLING

  • Yang Shuyi1, Tan Jianjun1, Zhu Caichao1, Zhou Ye1, Li Chengwu1, Liao Bo2
Author information +
文章历史 +

摘要

为深入探究齿根裂纹激励对风电齿轮-轴承耦合系统动力学特性的影响规律,提出一种考虑切片耦合效应的含裂纹齿轮时变啮合刚度(TVMS)解析计算与系统振动耦合求解方法。以企业某型风电齿轮箱高速级为研究对象,综合考虑齿轮副动态啮合力、滚动轴承动态支撑力等时变因素,建立风电齿轮-轴承耦合系统裂纹故障动力学模型,分析齿根裂纹对齿轮TVMS以及系统动态特性的影响,并通过台架试验验证了模型的正确性。研究结果表明:考虑切片耦合效应的齿轮TVMS修正算法能更好地表征裂纹故障下齿轮啮合刚度的动态变化,齿根裂纹导致齿轮TVMS降低,忽略切片轮齿间的耦合效应可能会高估齿轮裂纹深度对齿轮TVMS的影响;齿根裂纹激励与轴承内滚动体动态接触载荷之间存在一定关联规律,随着齿根裂纹深度的增加,滚动体动态接触载荷的幅值也随之增加,轴承承载区范围出现减小的趋势;当含裂纹齿轮参与啮合时,TVMS的降低将导致齿轮-轴承耦合系统的振动位移产生较大周期性冲击响应,并在啮频附近产生边频带现象,忽略切片轮齿间的耦合效应或将轴承简化为刚度阻尼矩阵可能会低估齿轮裂纹激励对耦合系统的振动响应。

Abstract

In order to further investigate the influence between the tooth root crack excitation and the dynamic characteristics of the wind turbine gear-bearing coupling system, a quantitative calculation of the time varying meshing stiffness(TVMS) of cracked gears and a coupled system vibration solution method considering the slicing coupling effect are proposed. Taking the high-speed stage of a certain type of wind power gearbox in an enterprise as the research object, and comprehensively considering time-varying factors such as the dynamic meshing force of gear pairs and the dynamic supporting force of rolling bearings, a dynamic model of crack faults in the wind power gear-bearing coupling system was established. The influence of tooth root cracks on the TVMS of gears and the dynamic characteristics of the system was analyzed, and the correctness of the model was verified through bench tests. The results show that: the gear TVMS correction algorithm considering the slicing coupling effect can better characterise the dynamic change of the gear meshing stiffness under crack failure, the tooth root crack causes the gear TVMS to decrease, and ignoring the coupling effect between the slicing gear teeth may overestimate the effect of the tooth root crack depth on the gear TVMS. There is a certain correlation law between the root crack excitation and the dynamic contact load of the rolling body in the bearing, with the increase of the root crack depth, the amplitude of the dynamic contact load of the rolling body also increases, and the range of the bearing load carrying area tends to decrease; When cracked gears are involved in meshing, the reduction of TVMS will cause the vibration displacement of the coupled gear-bearing system to produce a large cyclic shock response, and produce the phenomenon of side bands near the meshing frequency, ignoring the coupling effect between the sliced gears and teeth, or simplifying bearings to stiffness damping matrix may underestimate the vibration response of the coupled system due to gear crack excitation.

关键词

风电机组 / 齿轮传动 / 动力学 / 齿根裂纹 / 切片法 / 滚动轴承

Key words

wind turbines / gear transmission / dynamics / gear cracks / slice method / rolling bearing

引用本文

导出引用
杨书益, 谭建军, 朱才朝, 周烨, 李成武, 廖波. 计入齿根裂纹与切片耦合效应的风电齿轮-轴承耦合系统动态特性分析[J]. 太阳能学报. 2025, 46(10): 605-617 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0967
Yang Shuyi, Tan Jianjun, Zhu Caichao, Zhou Ye, Li Chengwu, Liao Bo. DYNAMIC CHARACTERISTICS ANALYSIS OF WIND TURBINE GEAR-BEARING SYSTEMS CONSIDERING EFFECTS OF TOOTH ROOT CRACKS AND SLICING COUPLING[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 605-617 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0967
中图分类号: TM315   

参考文献

[1] CHEN Z G, ZHAI W M, SHAO Y M, et al.Analytical model for mesh stiffness calculation of spur gear pair with non-uniformly distributed tooth root crack[J]. Engineering failure analysis, 2016, 66: 502-514.
[2] NING J Y, CHEN Z G, ZHI Y S, et al.Improved analytical method for gear body-induced deflections with tooth root crack considering structural coupling effect[J]. Engineering failure analysis, 2022, 137: 106400.
[3] CHEN Z G, ZHANG J, ZHAI W M, et al.Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack[J]. Engineering failure analysis, 2017, 82: 72-81.
[4] 毕玉, 朱才朝, 谭建军, 等. 齿根裂纹对风电齿轮箱高速级动态特性影响分析及其故障模式识别[J]. 太阳能学报, 2022, 43(7): 284-292.
BI Y, ZHU C C, TAN J J, et al.Influence of tooth root crack on dynamic characteristics of wind turbine gearbox high-speed stage and failure mode identification[J]. Acta energiae solaris sinica, 2022, 43(7): 284-292.
[5] 孟宗, 李佳松, 潘作舟, 等. 裂纹故障对轮齿时变啮合刚度的影响分析[J]. 中国机械工程, 2022, 33(16): 1897-1905, 1911.
MENG Z, LI J S, PAN Z Z, et al.Influences of crack faults on TVMS of gear teeth[J]. China mechanical engineering, 2022, 33(16): 1897-1905, 1911.
[6] 莫帅, 胡庆森, 王檑, 等. 考虑齿根裂纹的传动系统动力学特性研究[J]. 华中科技大学学报(自然科学版), 2023, 51(12): 66-72.
MO S, HU Q S, WANG L, et al.Research on dynamic characteristics of transmission system considering tooth root crack[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2023, 51(12): 66-72.
[7] 莫帅, 王檑, 胡庆森, 等. 裂纹齿轮时变啮合刚度与传动系统振动机理[J]. 中南大学学报(自然科学版), 2023, 54(5): 1769-1778.
MO S, WANG L, HU Q S, et al.Time varying meshing stiffness of cracked gears and fault vibration for transmission system[J]. Journal of Central South University (science and technology), 2023, 54(5): 1769-1778.
[8] CUI L L, HUANG J F, ZHAI H, et al.Research on the meshing stiffness and vibration response of fault gears under an angle-changing crack based on the universal equation of gear profile[J]. Mechanism and machine theory, 2016, 105: 554-567.
[9] PATIL V, CHOUHAN V, PANDYA Y.Geometrical complexity and crack trajectory based fatigue life prediction for a spur gear having tooth root crack[J]. Engineering failure analysis, 2019, 105: 444-465.
[10] CHEN Y X, JIN Y, LIANG X H, et al.Propagation path and failure behavior analysis of cracked gears under different initial angles[J]. Mechanical systems and signal processing, 2018, 110: 90-109.
[11] WANG S Y, ZHU R P, XIAO Z M.Investigation on crack failure of helical gear system of the gearbox in wind turbine: Mesh stiffness calculation and vibration characteristics recognition[J]. Ocean engineering, 2022, 250: 110972.
[12] 刘杰, 张磊, 赵思雨, 等. 包含齿根裂纹的风电行星齿轮动力学特性分析[J]. 太阳能学报, 2019, 40(1): 192-198.
LIU J, ZHANG L, ZHAO S Y, et al.Dynamic characteristic of wind turbine planetary set with crack in Sun gear[J]. Acta energiae solaris sinica, 2019, 40(1): 192-198.
[13] XIE C Y, SHU X D.A new mesh stiffness model for modified spur gears with coupling tooth and body flexibility effects[J]. Applied mathematical modelling, 2021, 91: 1194-1210.
[14] WANG Q B, CHEN K K, ZHAO B, et al.An analytical-finite-element method for calculating mesh stiffness of spur gear pairs with complicated foundation and crack[J]. Engineering failure analysis, 2018, 94: 339-353.
[15] HUANGFU Y F, CHEN K K, MA H, et al.Deformation and meshing stiffness analysis of cracked helical gear pairs[J]. Engineering failure analysis, 2019, 95: 30-46.
[16] QIAO Z Z, CHEN K K, ZHOU C J, et al.An improved fault model of wind turbine gear drive under multi-stage cracks[J]. Simulation modelling practice and theory, 2023, 122: 102679.
[17] 花志锋, 赵荣珍. 风电齿轮箱行星轮系的齿面摩擦与齿根裂纹耦合效应计算方法[J]. 太阳能学报, 2022, 43(9): 287-293.
HUA Z F, ZHAO R Z.Calculation method of coupling effect of tooth surface friction and tooth root cracking in planetary wheel systems for wind turbine gearboxes[J]. Acta energiae solaris sinica, 2022, 43(9): 287-293.
[18] KALAY O C, DOĞAN O, YUCE C, et al. Effects of tooth root cracks on vibration and dynamic transmission error responses of asymmetric gears: a comparative study[J]. Mechanics based design of structures and machines, 2024, 52(5): 2569-2604.
[19] LIU Z M, CHANG C, HU H D, et al.Dynamic characteristics of spur gear system with tooth root crack considering gearbox flexibility[J]. Mechanical systems and signal processing, 2024, 208: 110966.
[20] ZHAO W Q, LIU J, ZHAO W H, et al.An investigation on vibration features of a gear-bearing system involved pitting faults considering effect of eccentricity and friction[J]. Engineering failure analysis, 2022, 131: 105837.
[21] WAN Z G, CAO H R, ZI Y Y, et al.Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears[J]. Mechanism and machine theory, 2015, 92: 447-463.
[22] 代鹏, 王建平, 鲁珏, 等. 变工况下裂纹故障直齿轮副振动特性分析[J]. 振动与冲击, 2022, 41(11): 225-234.
DAI P, WANG J P, LU J, et al.Vibration characteristics analysis of spur gear pair with crack fault under variable working conditions[J]. Journal of vibration and shock, 2022, 41(11): 225-234.
[23] HUANG W K, LI Z W, MA H, et al.A novel analytical method for meshing characteristics of spiral bevel gears considering slice coupling[J]. Mechanism and machine theory, 2024, 195: 105591.
[24] LI Z W, MA H, FENG M J, et al.Meshing characteristics of spur gear pair under different crack types[J]. Engineering failure analysis, 2017, 80: 123-140.
[25] LIANG X H, ZUO M J, PANDEY M.Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set[J]. Mechanism and machine theory, 2014, 76: 20-38.
[26] XIANG L, GAO N.Coupled torsion-bending dynamic analysis of gear-rotor-bearing system with eccentricity fluctuation[J]. Applied mathematical modelling, 2017, 50: 569-584.
[27] 谭建军, 杨书益, 李浩, 等. 齿面粗糙度对风电齿轮箱行星轮系动力学特性影响[J]. 太阳能学报, 2024, 45(3): 122-132.
TAN J J, YANG S Y, LI H, et al.Dynamic characteristics of planetary gear train in wind turbine gearbox under influences of tooth roughness[J]. Acta energiae solaris sinica, 2024, 45(3): 122-132.
[28] 田德, 陶立壮, 胡玥, 等. 基于齿廓修形和摩擦耦合的风电齿轮磨损动力学特性分析[J]. 太阳能学报, 2022, 43(5): 260-269.
TIAN D, TAO L Z, HU Y, et al.Dynamics of wind turbine gear wear fault based on tooth profile modification and friction coupling[J]. Acta energiae solaris sinica, 2022, 43(5): 260-269.
[29] MENG Z, SHI G X, WANG F L.Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness[J]. Mechanism and machine theory, 2020, 148: 103786.

基金

国家重点研发计划(2022YFB4201402); 国家自然科学基金(52105050); 重庆市发展专项(CSTB2022TIAD-KPX0074); 重庆市科技计划(CSTB2023NSCQ-BSX0015)

PDF(5206 KB)

Accesses

Citation

Detail

段落导航
相关文章

/