该文研究光伏功率优化器在阴影失配情况下对建筑光伏一体化(BIPV)系统的影响。首先设计3种不同的组串遮挡方案,在已知组件表面阴影遮挡比例的基础上,对接入优化器的建筑光伏系统发电量进行仿真,并搭建实验平台,对比仿真数据和实测数据,验证仿真模型的精确性。最后以深圳安托山光伏大厦BIPV玻璃幕墙为研究对象,在对每一块组件进行全年8760 h阴影分析的基础上,分别讨论不装优化器、阴影遮挡区域加装优化器、全部加装优化器3种情况下的系统发电量。结果表明:功率优化器对建筑光伏系统发电量的提升受阴影遮挡影响,在组串受到不均匀遮挡的月份,安装功率优化器后最高可提升9.48%的发电量,且全部加装优化器情况下,可提升系统年总发电量1.13%。
Abstract
This paper investigates the impact of photovoltaic power optimizers on building integrated photovoltaics(BIPV) systems under shading mismatch conditions. First, three different string shading scenarios were designed. Based on the shading ratios on the module surfaces are known, simulations were conducted to compare the power generation with and without the optimizers. Then, an experimental platform was set up to compare the simulated data with the measured data, verifying the accuracy of the simulation model. Finally, the BIPV glass curtain wall of the Antuoshan Photovoltaic Building in Shenzhen was taken as the study object. A comprehensive shading analysis was performed on each module over the course of a year (8,760 hours). The system power generation was discussed under three conditions: without optimizers, with optimizers installed only in shaded areas, and with optimizers installed on all modules. The results indicate that the power optimizer's impact on the power generation of building photovoltaic systems is influenced by shading. In months when the strings are unevenly shaded, installing power optimizers can increase power generation by up to 9.48%. Additionally, when all modules are equipped with optimizers, the overall system power generation increases by 1.13%.
关键词
光伏发电 /
太阳辐照 /
光伏系统 /
BIPV /
功率优化器 /
阴影遮挡
Key words
photovoltaic power generation /
solar irradiance /
PV system /
BIPV /
photovoltaic power optimizer /
shading
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张晓欣. “双碳”背景下基于BIPV的应用场景分析[J]. 科技创新与应用, 2023, 13(32): 6-9.
ZHANG X X.An analysis of the application scenario based on BIPV in the context of “dual carbon”[J]. Technology innovation and application, 2023, 13(32): 6-9.
[2] KUHN T E, ERBAN C, HEINRICH M, et al.Review of technological design options for building integrated photovoltaics (BIPV)[J]. Energy and buildings, 2021, 231: 110381.
[3] 马才, 向宴德, 马元. “双碳”背景下BIPV的应用与探索[J]. 太阳能, 2024(2): 5-10.
MA C, XIANG Y D, MA Y.Application and exploration of BIPV under background of emission peak and carbon neutrality[J]. Solar energy, 2024(2): 5-10.
[4] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system (BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[5] YU G, YANG H, LUO D, et al.A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds[J]. Renewable and sustainable energy reviews, 2021, 149: 111355.
[6] 唐圣学, 乔乃珍, 冀勃睿, 等.考虑阴影变化的太阳电池模型及动态参数分析[J]. 太阳能学报, 2023, 44(10): 113-119.
TANG S X, QIAO N Z, JI B R, et al.Modeling and dynamic parameter analysis of solar cell considering shadow change[J]. Acta energiae solaris sinica, 2023, 44(10): 113-119.
[7] 魏东, 代敏, 唐九龄, 等. 光伏模组积灰与阴影特性分析及识别方法[J]. 科学技术与工程, 2024, 24(7): 2742-2748.
WEI D, DAI M, TANG J L, et al.Analysis and identification method of dust accumulation and shadow characteristics of photovoltaic modules[J]. Science technology and engineering, 2024, 24(7): 2742-2748.
[8] 曹睿. 失配场景下的光伏阵列功率提升技术[D]. 杭州: 浙江大学, 2021.
CAO R.Photovoltaic array output power improvement technology in mismatch scenarios[D]. Hangzhou: Zhejiang University, 2021.
[9] 刘艳东, 胡祎文, 陈楠, 等. 光储微电网功率优化方法及协调控制策略研究[J]. 电气工程学报, 2022, 17(1): 22-30.
LIU Y D, HU Y W, CHEN N, et al.Study of power optimization method and coordinated control strategy of optical storage microgrid[J]. Journal of electrical engineering, 2022, 17(1): 22-30.
[10] WU F, WANG Z, LUO S.Buck-boost three-level semi-dual-bridge resonant isolated DC-DC converter[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 9(5): 5986-5995.
[11] 王伟, 戴朝华, 陈维荣, 等. 改进功率预测变步长扰动法在光伏MPPT中的研究[J]. 太阳能学报, 2022, 43(2): 217-225.
WANG W, DAI C H, CHENG W R, et al.Research on improved variable step perturbation algorithm for power prediction in photovoltaic MPPT[J]. Acta energiae solaris sinica, 2022, 43(2): 217-225.
[12] 解宝, 李萍宇, 苏绎仁, 等. 局部阴影下光伏阵列的最大功率点跟踪算法研究[J]. 太阳能学报, 2023, 44(12): 47-52.
XIE B, LI P Y, SU Y R, et al.Research on maximum power point tracking algorithm of PV array under local shadow[J]. Acta energiae solaris sinica, 2023, 44(12): 47-52.
[13] SINAPIS K, TSATSAKIS K, DÖRENKÄMPER M, et al. Evaluation and analysis of selective deployment of power optimizers for residential PV systems[J]. Energies, 2021, 14(4): 811.
[14] 吴贞龙, 徐政, 胡晓燕, 等. 倾斜面太阳辐照度实用计算模型的研究[J]. 太阳能学报, 2016, 37(3): 787-793.
WU Z L, XU Z, HU X Y, et al.Study on practical calculating models of irradiance intensity on tilted surfaces[J]. Acta energiae solaris sinica, 2016, 37(3): 787-793.
[15] PEREZ R, STEWART R, ARBOGAST C, et al.An anisotropic hourly diffuse radiation model for sloping surfaces: description, performance validation, site dependency evaluation[J]. Solar energy, 1986, 36(6): 481-497.
[16] 白建波. 太阳能光伏系统建模、仿真与优化[M]. 电子工业出版社, 2014.
BAI J B.Modeling, simulation and optimization of solar photovoltaic system[M]. Beijing: Publishing House of Electronics Industry, 2014.
[17] 王跃, 白建波, 李建. 光伏发电系统精细化逐时建模方法与应用案例分析[J]. 太阳能, 2021(5): 59-66.
WANG Y, BAI J B, LI J.Refined hourly modeling method of PV power generation system and analysis of application cases[J]. Solar energy, 2021(5): 59-66.
[18] ZHANG X, CHEN M, FU Y, et al.A step- down partial power optimizer structure for photovoltaic series-connected power optimizer system[C]// 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). Shenzhen, China, 2018.
基金
国家重点研发计划(2022YFB4201000)