基于权重因子改进型tanh函数的光伏MPPT算法

李平, 毛阗, 徐鉴其

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 373-380.

PDF(2705 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2705 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 373-380. DOI: 10.19912/j.0254-0096.tynxb.2024-0995

基于权重因子改进型tanh函数的光伏MPPT算法

  • 李平1,2, 毛阗1,2, 徐鉴其1,2
作者信息 +

PHOTOVOLTAIC MPPT ALGORITHM BASED ON WEIGHT FACTOR IMPROVED tanh FUNCTION

  • Li Ping1,2, Mao Tian1,2, Xu Jianqi1,2
Author information +
文章历史 +

摘要

根据光伏功率-电压曲线的特点,对最大功率点两侧采用不同的自适应步长扰动观察最大功率点跟踪算法:对右侧采用基于tanh函数的自适应步长算法,对左侧采用基于权重因子改进型tanh函数的自适应步长算法。通过仿真分析及硬件试验,验证所提出的基于权重因子改进型tanh函数的自适应步长扰动观察最大功率点跟踪算法的可行性和优越性。仿真分析和硬件试验结果表明:基于权重因子改进型tanh函数的自适应步长扰动观察最大功率点跟踪算法在辐照度和温度变化场景下均具有较好的跟踪速度和精度,能为光伏系统高效稳定的输出功率提供保障。

Abstract

According to the characteristics of the PV power-voltage curve, different adaptive step-size perturbation observation maximum power point tracking algorithms are used on both sides of the maximum power point: the adaptive step-size algorithm based on tanh function is used for the right side, and the adaptive step-size algorithm based on the improved tanh function based on weight factor is used for the left side. The feasibility and superiority of the proposed adaptive step-size perturbation observation maximum power point tracking algorithm based on the weight factor improved tanh function are verified through simulation analysis and hardware tests. The simulation analysis and hardware test results show that the adaptive step-size perturbation observation maximum power point tracking algorithm based on the improved tanh function of the weight factor has better tracking speed and accuracy in both irradiance and temperature change scenarios, which can provide efficient and stable power output of the PV system.

关键词

最大功率点跟踪 / 扰动观察法 / 自适应步长 / 权重因子 / tanh函数

Key words

maximum power point tracking / perturbation observation method / adaptive step size / weight factor / tanh function

引用本文

导出引用
李平, 毛阗, 徐鉴其. 基于权重因子改进型tanh函数的光伏MPPT算法[J]. 太阳能学报. 2024, 45(10): 373-380 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0995
Li Ping, Mao Tian, Xu Jianqi. PHOTOVOLTAIC MPPT ALGORITHM BASED ON WEIGHT FACTOR IMPROVED tanh FUNCTION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 373-380 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0995
中图分类号: TM615   

参考文献

[1] PANDEY A, DASGUPTA N, MUKERJEE A K.High-performance algorithms for drift avoidance and fast tracking in solar MPPT system[J]. IEEE transactions on energy conversion, 2008, 23(2): 681-689.
[2] 赵争鸣, 陈剑, 孙晓瑛. 太阳能光伏发电最大功率点跟踪技术[M]. 北京: 电子工业出版社, 2012: 28-78.
ZHAO Z M, CHEN J, SUN X Y.Maximum power point tracking technology for photovoltaic power generation[M]. Beijing: Publishing House of Electronics Industry, 2012: 28-78.
[3] SALAS V, OLÍAS E, BARRADO A, et al. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems[J]. Solar energy materials and solar cells, 2006, 90(11): 1555-1578.
[4] 徐建国, 沈建新, 王海新, 等. 基于新型变步长电导增量法的最大功率点跟踪策略[J]. 可再生能源, 2018, 36(9): 1305-1313.
XU J G, SHEN J X, WANG H X, et al.Maximum power point tracking strategy based on novel variable step-size incremental conductance algorithm[J]. Renewable energy resources, 2018, 36(9): 1305-1313.
[5] 卢超. 一种改进型电导增量法MPPT控制策略仿真研究[J]. 信息技术, 2019, 43(3): 111-115.
LU C.Simulation study of MPPT control strategy based on an improved conductance increment method[J]. Information technology, 2019, 43(3): 111-115.
[6] 张东宁. 基于改进电导增量法的光伏最大功率点跟踪策略研究[J]. 太阳能学报, 2022, 43(8): 82-90.
ZHANG D N.Research on photovoltaic maximum power point tracking strategy based on improved conductance increment method[J]. Acta energiae solaris sinica, 2022, 43(8): 82-90.
[7] SALAMEH Z, TAYLOR D.Step-up maximum power point tracker for photovoltaic arrays[J]. Solar energy, 1990, 44(1): 57-61.
[8] 徐凯, 王湘萍. 光伏发电最大功率点跟踪的智能集成控制[J]. 太阳能学报, 2018, 39(2): 536-543.
XU K, WANG X P.Intelligent integrated control for maximum power point tracking of PV generation system[J]. Acta energiae solaris sinica, 2018, 39(2): 536-543.
[9] 王伟, 戴朝华, 陈维荣, 等. 改进功率预测变步长扰动法在光伏MPPT中的研究[J]. 太阳能学报, 2022, 43(2): 217-225.
WANG W, DAI C H, CHEN W R, et al.Research on improved variable step perturbation algorithm for power prediction in photovoltaic MPPT[J]. Acta energiae solaris sinica, 2022, 43(2): 217-225.
[10] 毛阗, 李平. 基于PVsyst和Simulink的建筑主动配电系统光伏仿真设计[J]. 建筑电气, 2023, 9(9): 9-15.
MAO T, LI P.PV simulation design for active distribution system of buildings based on PVsyst and Simulink[J]. Building electricity, 2023, 9(9): 9-15.
[11] 荣德生, 刘凤. 改进型扰动观察法在光伏MPPT中的研究[J]. 电力系统及其自动化学报, 2017, 29(3): 104-109.
RONG D S, LIU F.Application of improved perturbation and observation method to photovoltaic MPPT[J]. Proceedings of the CSU-EPSA, 2017, 29(3): 104-109.
[12] SANTOS J L, ANTUNES F, CHEHAB A, et al.A maximum power point tracker for PV systems using a high performance boost converter[J]. Solar energy, 2006, 80(7): 772-778.
[13] BHATTACHARYYA S, KUMAR P D S, SAMANTA S, et al. Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms[J]. IEEE transactions on sustainable energy, 2021, 12(1): 293-302.
[14] 刘秋华, 张秀锦, 樊陈. 基于功率差变步长扰动观察法的MPPT控制算法[J]. 电源技术, 2020, 44(7): 1035-1039.
LIU Q H, ZHANG X J, FAN C.MPPT control algorithm based on power difference variable step-size disturbance observation method[J]. Chinese journal of power sources, 2020, 44(7): 1035-1039.
[15] ENRIQUE J, DURAN E, SIDRACH-DE-CARDONA M, et al. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies[J]. Solar energy, 2007, 81: 31-38.
[16] 郑杨. 光伏发电系统中最大功率点追踪控制算法研究[D]. 青岛: 青岛理工大学, 2023.
ZHENG Y.Research on maximum power point tracking control algorithm in photovoltaic power generation system[D]. Qingdao: Qingdao University of Technology, 2023.
[17] 程德树. 基于混杂系统理论的光伏变换器建模与控制研究[D]. 天津: 天津理工大学, 2009.
CHENG D S.Research on modeling and control of photovoltaic converter based on hybrid system theory[D]. Tianjin: Tianjin University of Technology, 2009.
[18] 马爱华, 李磊, 师贺. 光伏电池建模及变步长MPPT控制[J]. 电气工程学报, 2017, 12(5): 58-63.
MA A H, LI L, SHI H.Modeling of photovoltaic cells and MPPT control algorithm with variable step[J]. Journal of electrical engineering, 2017, 12(5): 58-63.
[19] 谢磊. 改进型功率预测变步长扰动观察法在光伏系统MPPT中的应用研究[D]. 阜新: 辽宁工程技术大学, 2021.
XIE L.Application research of improved power prediction variable step perturbation observation method in MPPT of photovoltaic system[D]. Fuxin: Liaoning Technical University, 2021.
[20] 施红如, 潘三博, 顾锦, 等. 一种改进型扰动观察法光伏最大功率点跟踪的建模与仿真[J]. 上海电机学院学报, 2019, 22(3): 160-165.
SHI H R, PAN S B, GU J, et al.An improved perturbation observation method photovoltaic maximum power point tracking modeling and simulation[J]. Journal of Shanghai Dianji University, 2019, 22(3): 160-165.
[21] CYBENKO G.Approximation by superpositions of a sigmoidal function[J]. Mathematics of control,signals,and systems(MCSS), 1989, 2(4): 303-314.
[22] 唐国强. 光伏微电网混合储能系统控制策略研究[D]. 淮南: 安徽理工大学, 2019.
TANG G Q.Research on control strategy of hybrid energy storage system in photovoltaic microgrid[D]. Huainan: Anhui University of Science and Technology, 2019.

基金

浙江省科技厅“尖兵领雁+X”研发攻关计划项目(2024C03247); 浙江省建设厅建设科研项目(2021K217); 浙江大学平衡建筑研究中心科研项目(RD49)

PDF(2705 KB)

Accesses

Citation

Detail

段落导航
相关文章

/