制氢系统碱性电解槽凹凸双极板流场分析与结构优化

赵晨辉, 金子皓, 向玲, 卢晓晨, 杨鑫

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 138-146.

PDF(4979 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4979 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 138-146. DOI: 10.19912/j.0254-0096.tynxb.2024-0998

制氢系统碱性电解槽凹凸双极板流场分析与结构优化

  • 赵晨辉, 金子皓, 向玲, 卢晓晨, 杨鑫
作者信息 +

FLOW-FIELD ANALYSIS AND STRUCTURAL OPTIMIZATION OF CONCAVE-CONVEX BIPOLAR PLATES IN ALKALINE ELECTROLYZERS FOR HYDROGEN PRODUCTION

  • Zhao Chenhui, Jin Zihao, Xiang Ling, Lu Xiaochen, Yang Xin
Author information +
文章历史 +

摘要

针对制氢系统碱性水电解过程中凹凸双极板上碱液分布不均现象进行双极板结构的优化,以5 Nm3/h碱性电解槽凹凸双极板为研究对象,利用CFD方法其在工作时的碱液流速分布规律,通过数值模拟分析结果表明,碱性电解槽凹凸双极板上碱液流动的高速区集中于极板中心轴。针对该现象提出优化方案,一方面通过在凹凸双极板碱液入口端倾斜设置导流槽,从而使电解液分散进入流场;另一方面通过将凹凸双极板传统的球形凹凸结构优化为椭球形凹凸结构,从而对碱液进行适当的分流与聚流。仿真结果表明,通过设置斜式导流槽和改变凹凸结构,能提高双极板的流场均匀性。

Abstract

To tackle the non-uniform distribution of alkaline electrolyte across the corrugated bipolar plates during alkaline water electrolysis process for hydrogen production, the present work undertakes a structural optimization of the bipolar plates in a 5 Nm³/h alkaline electrolyzer. Computational fluid dynamics was employed to resolve the electrolyte velocity field under representative operating conditions. Numerical results indicate that the high-velocity zone is concentrated along the central axis of the existing corrugated plates, undermining flow uniformity. Two complementary remedies are therefore proposed. First, inclined guide grooves are introduced at the electrolyte inlet to laterally disperse the incoming flow. Second, the conventional spherical protrusions and recesses are replaced by ellipsoidal corrugations that alternately split and refocus the electrolyte stream. Simulations demonstrate that the combination of slanted inlet grooves and ellipsoidal surface topography markedly improves flow uniformity across the entire bipolar plate.

关键词

氢能 / 电解槽 / 数值模拟 / 凹凸双极板 / 斜式导流槽

Key words

hydrogen energy / electrolyzer / computer simulation / concave-convex bipolar plates / inclined diversion groove

引用本文

导出引用
赵晨辉, 金子皓, 向玲, 卢晓晨, 杨鑫. 制氢系统碱性电解槽凹凸双极板流场分析与结构优化[J]. 太阳能学报. 2025, 46(10): 138-146 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0998
Zhao Chenhui, Jin Zihao, Xiang Ling, Lu Xiaochen, Yang Xin. FLOW-FIELD ANALYSIS AND STRUCTURAL OPTIMIZATION OF CONCAVE-CONVEX BIPOLAR PLATES IN ALKALINE ELECTROLYZERS FOR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 138-146 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0998
中图分类号: TK91   

参考文献

[1] ZHANG B, ZHANG S X, YAO R, et al.Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of electronic science and technology, 2021, 19(2): 100080.
[1] DAWOOD F, ANDA M, SHAFIULLAH G M.Hydrogen production for energy: an overview[J]. International journal of hydrogen energy, 2020,45(7): 3847-3869.
[2] MARTINEZ-BURGOS W J, DE SOUZA CANDEO E, PEDRONI MEDEIROS A B, et al. Hydrogen: Current advances and patented technologies of its renewable production[J]. Journal of cleaner production, 2021, 286: 124970.
[3] 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255.
ZHAO Y Z, MENG B, CHEN L X, et al.Utilization status of hydrogen energy[J]. Chemical industry and engineering progress, 2015, 34(9):3248-3255.
[4] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG X, et al.Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural gas industry, 2022, 42(4):1-20.
[5] 李志伟, 赵雨泽, 吴培. 碳交易机制下绿氢蓝氢协调优化对综合能源系统的影响评估[J]. 太阳能学报, 2024, 45(10): 37-47
LI Z W, ZHAO Y Z, WU P.Impact assessment of coordinated optimization of green hydrogen and blue hydrogen on integrated energy system under carbon trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(10): 37-47.
[6] ZHOU Y, LI R Y, LV Z X, et al.Green hydrogen: a promising way to the carbon-free society[J]. Chinese journal of chemical engineering, 2022, 43: 2-13.
[7] YUE M L, LAMBERT H, PAHON E, et al.Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and sustainable energy reviews, 2021, 146: 111180.
[8] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on dc power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[9] 程浩然, 夏杨红, 何杭航, 等. 适用于可再生能源制氢的大容量碱液电解槽建模研究[J]. 太阳能学报, 2024, 45(2): 291-299.
CHENG H R, XIA Y H, HE H H, et al.Modeling of large-capacity alkaline electrolyzers for hydrogen production from renewable energy[J]. Acta energiae solaris sinica, 2024, 45(2): 291-299.
[10] 张腾飞. 碱性水电解制氢系统的建模分析与设计优化[D]. 北京: 北京化工大学, 2023.
ZHANG T F.Modeling analysis and design optimization of alkaline water electrolysis system for hydrogen production[D]. Beijing: Beijing University of Chemical Technology, 2023.
[11] 苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报, 2022, 43(6): 521-529.
SU X, XU L J, HU B.Modelling and analysis of photovoltaic PEM hydrogen production system considering multivariable factors[J]. Acta energiae solaris sinica, 2022, 43(6): 521-529.
[12] WANG T, WANG J Y, WANG P J, et al.Non-uniform liquid flow distribution in an alkaline water electrolyzer with concave-convex bipolar plate (CCBP): a numerical study[J]. International journal of hydrogen energy, 2023, 48(33): 12200-12214.
[14] ZHANG Z Z, JIN L M, DENG L A, et al.Three-dimensional simulation of two-phase flow distribution in spherical concave-convex shaped flow field for alkaline water electrolyzer[J]. International journal of hydrogen energy, 2023, 48(86): 33401-33410.

基金

国家自然科学基金(52475701; 5275111)

PDF(4979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/