该文基于中尺度气象研究与预报(WRF)模式和计算流体动力学(CFD)技术,构建一种适用于复杂山地风电场非定常流动仿真的新型中-微尺度耦合技术。特别地,由于中尺度、微尺度模拟时采用不同的地形分辨率,该文提出一种中-微尺度地形融合方法确保边界数据跨尺度传递时的高保真性。以中国山西和云南境内两处风电场为研究对象,首先分析地形融合方法对于跨尺度数据传递的影响,然后研究复杂山地风电场内地形对风速廓线的影响,最后分析风电场机组布置策略。结果表明,该文技术可有效反映中尺度大气条件和微尺度地形地貌等因素对于风资源分布的影响;相比于中尺度WRF方法,新型WRF-CFD耦合技术可将风速模拟的平均绝对误差控制在1 m/s以内。该文技术也可进一步用于山地风电场机组载荷评估和运行控制研究。
Abstract
In this paper, a newly coupled meso-micro-scale technique is constructed based on the mesoscale Weather Research and Forecasting (WRF) model and Computational Fluid Dynamics (CFD) technology, which is applicable to the simulation of unsteady flow in wind farms in complex terrain. In particular, due to the different terrain resolutions used in mesoscale and microscale simulations, the paper proposes a meso-microscale terrain blending method to ensure high fidelity in the cross-scale transfer of boundary data. Taking two wind farms in Shanxi and Yunnan as examples, the impact of the terrain blending method on mesoscale data transmission is firstly analyzed, then the impact of the terrain on the wind profile in complex mountain wind farms is investigated, and finally, the strategy of wind turbine layout in wind farms is analyzed. The results show that the proposed method can effectively reflect the influence of mesoscale atmospheric conditions and microscale topography on wind resource distribution; compared with the WRF simulation method, the WRF-CFD method can control the mean absolute error of wind speed simulation within 1 m/s. The method can be further utilized for the load evaluation and operation control of wind turbines in complex terrain.
关键词
风电场 /
CFD /
边界条件 /
中-微尺度耦合 /
地形融合
Key words
wind farm /
CFD /
boundary condition /
meso-micro-scale coupling /
terrain blending
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱蓉, 向洋, 孙朝阳, 等. 中国典型复杂地形风能资源特性及其形成机制[J]. 太阳能学报, 2024, 45(4): 226-237.
ZHU R, XIANG Y, SUN C Y, et al.Characteristics and formation mechanism of wind energy resources in typical complex terrain in China[J]. Acta energiae solaris sinica, 2024, 45(4): 226-237.
[2] 张珊, 王宗敏, 黄刚, 等. 基于WRF-LES的崇礼复杂地形局地风场模拟研究[J]. 高原气象, 2023, 42(1): 197-209.
ZHANG S, WANG Z M, HUANG G, et al.Local wind simulation over complex terrain of Chongli using WRF-LES[J]. Plateau meteorology, 2023, 42(1): 197-209.
[3] 刘达琳, 陶韬, 曹勇, 等. 基于WRF-LES模式的大气边界层近地风场精细化模拟研究[J]. 上海交通大学学报, 2024, 58(2): 220-231.
LIU D L, TAO T, CAO Y, et al.Refined simulation of near-surface windfield of atmospheric boundarylayer based on WRF-LES model[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 220-231.
[4] WISE A S, NEHER J M T, ARTHUR R S, et al. Meso- to Microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain[J]. Wind energy science, 2022, 7(1): 367-386.
[5] HAUPT S E, KOSOVIĆ B, BERG L K, et al.Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy[J]. Wind energy science, 2023, 8(8): 1251-1275.
[6] 张嘉荣, 程雪玲. 基于CFD降尺度的复杂地形风场数值模拟研究[J]. 高原气象, 2020, 39(1): 172-184.
ZHANG J R, CHENG X L.Numerical simulation of wind field in complex terrain based on CFD downscaling[J]. Plateau meteorology, 2020, 39(1): 172-184.
[7] 赵子涵, 李朝, 肖仪清, 等. 基于NWP/CFD嵌套的复杂地形风场模拟研究[J]. 太阳能学报, 2021, 42(2): 205-210.
ZHAO Z H, LI C, XIAO Y Q, et al.WIND field simulation over complex terrain by coupling NWP/CFD approach[J]. Acta energiae solaris sinica, 2021, 42(2): 205-210.
[8] 孙壮, 李树民, 朱蓉, 等. 考虑大气稳定度的典型复杂地形风场CFD模式[J]. 太阳能学报, 2024, 45(4): 197-205.
SUN Z, LI S M, ZHU R, et al.CFD model of wind field in typical complex terrain considering atmospheric stability[J]. Acta energiae solaris sinica, 2024, 45(4): 197-205.
[9] 杨易, 谭健成, 金博崇, 等. 基于WRF与CFD的复杂地形风场多尺度耦合模拟分析[J]. 华南理工大学学报(自然科学版), 2021, 49(5): 65-73, 83.
YANG Y, TAN J C, JIN B C, et al.Multi-scale simulation on the wind field for complex terrain based on coupled WRF and CFD techniques[J]. Journal of South China University of Technology (natural science edition), 2021, 49(5): 65-73, 83.
[10] DURÁN P, MEIΒNER C, CASSO P. A new Meso-Microscale coupled modelling framework for wind resource assessment: a validation study[J]. Renewable energy, 2020, 160: 538-554.
[11] WANG Q, LUO K, YUAN R Y, et al.A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain[J]. Energy, 2020, 203: 117913.
[12] HAN Y, SHEN L, XU G J, et al.Multiscale simulation of wind field on a long-span bridge site in mountainous area[J]. Journal of wind engineering and industrial aerodynamics, 2018, 177: 260-274.
[13] VONLANTHEN M, ALLEGRINI J, CARMELIET J.Assessment of a one-way nesting procedure for obstacle resolved large eddy simulation of the ABL[J]. Computers & fluids, 2016, 140: 136-147.
[14] BUHR R, KASSEM H, STEINFELD G, et al.A Multi-point meso-micro downscaling method including atmospheric stratification[J]. Energies, 2021, 14(4): 1191.
[15] DURÁN P, MEIßNER C, RUTLEDGE K, et al. Meso-Microscale coupling for wind resource assessment using averaged atmospheric stability conditions[J]. Meteorologische zeitschrift, 2019, 28(4): 273-291.
[16] WANG W, BRUYÈRE C, DUDA M, et al. WRF-ARW V3: User’s Guide[M]. National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA. 2021.
[17] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and computational fluid dynamics, 2006, 20: 181-195.
[18] NILSSON H.A thorough description of how wall functions are implemented in OpenFOAM[C]// Proceedings of CFD with OpenSource Software, 2016.
[19] LI S H, SUN X J, ZHANG R W, et al.A feasibility study of simulating the micro-scale wind field for wind energy applications by NWP/CFD model with improved coupling method and data assimilation[J]. Energies, 2019, 12(13): 2549.
[20] MACHÉ M, MOUSLIM H, MERVOYER L.From meso-scale to micro scale LES modelling: application by a wake effect study for an offshore wind farm[C]//ITM web of conferences, 2014, 2: 01004.
基金
国家重点研发计划(2022YFB4201200); 国家自然科学基金重大研究计划培育项目(92252103); 江苏省卓越博士后计划(2023ZB383)