为掌握风力机塔架实际消耗的疲劳损伤,基于振动监测对风力机进行疲劳评估至关重要。对1.5 MW风力机的塔底应变进行长期监测,基于雨流计数法提出实时预测疲劳损伤的新方法。该方法通过将过去无法形成完整循环的残波和新测量的应力数据串联,预测当前的损伤,并将新的残波储存,继续和后续测量应力结合,实时计算风力机的疲劳损伤。使用该方法得到的疲劳损伤和将已知数据作为连续序列得到的结果完全相同,证明了该方法的准确性。同时,该方法只需储存历史数据的残波即可,占用的内存更少,这为风力机结构疲劳损伤的在线实时预测提供了解决方案。
Abstract
In order to understand the actual fatigue damage and remaining service life of wind turbines, it is crucial to conduct fatigue assessment of wind turbines based on vibration monitoring. Through long-term monitoring of tower bottom strain of a 1.5MW wind turbine, a new method for real-time prediction of fatigue damage was proposed based on the traditional four-point rainflow cycle counting algorithm. Traditional methods only considered stress cycles within subsets and ignored transition cycles between subsets. The new method proposed in this article predicted the current fatigue damage by concatenating residue series that could not form complete cycles in the past stresses with newly measured stresses. The new residue series were then stored and combined with subsequent measured stresses to evaluate the fatigue damage of wind turbines in real time. The fatigue damage obtained by using this method was identical to the results obtained by using known data as a continuous sequence, proving the accuracy of this method. At the same time, in this method only the residue series of historical data need to stored, which occupy less memory, this article also proveds that the accuracy of this method is not affected by the calculation window length. This provides a solution for online real-time prediction of fatigue damage in wind turbine structures.
关键词
风力机 /
监测 /
疲劳损伤 /
寿命预测 /
残波串联法
Key words
wind turbines /
monitoring /
fatigue damage /
fatigue life prediction /
residue concatenation methodology
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 葛君, 陈前, 王瑞良, 等. 不同海域水文环境与风力机疲劳载荷差异性研究[J]. 太阳能学报, 2024, 45(1): 205-209.
GE J, CHEN Q, WANG R L, et al.Research on difference of hydrological environment and wind turbine fatigue load in different sea areas[J]. Acta energiae solaris sinica, 2024, 45(1): 205-209.
[2] 李万润, 郭赛聪, 张广隶, 等. 考虑风速风向联合概率分布的风电塔筒结构风致疲劳寿命评估[J]. 太阳能学报, 2022, 43(5): 278-286.
LI W R, GUO S C, ZHANG G L, et al.Wind fatigue life evaluation of wind turbine tower structure considering joint probability distribution of wind speed and direction[J]. Acta energiae solaris sinica, 2022, 43(5): 278-286.
[3] 余建星, 赵岩, 余杨, 等. 基于S-N曲线和断裂力学的浮式风力机张力腿疲劳评估[J]. 太阳能学报, 2021, 42(9): 250-255.
YU J X, ZHAO Y, YU Y, et al.Fatigue assessment of tethers of fowt based on S-N curve and fracture mechanics[J]. Acta energiae solaris sinica, 2021, 42(9): 250-255.
[4] WEIJTENS W, NOPPE N, VERBELEN T, et al.Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm[J]. Journal of physics: conference series, 2016, 753: 092018.
[5] LORAUX C, BRÜHWILER E. Realistic examination of the fatigue life of a wind turbine tower using data from long term monitoring[C]//IABSE Conference-Structural Engineering: Providing Solutions to Global Challenges. Geneva, Switzerland, 2015: 1-7.
[6] HÜBLER C, WEIJTJENS W, ROLFES R, et al. Reliability analysis of fatigue damage extrapolations of wind turbines using offshore strain measurements[J]. Journal of physics: conference series, 2018, 1037: 032035.
[7] MAI Q A, WEIJTJENS W, DEVRIENDT C, et al.Prediction of remaining fatigue life of welded joints in wind turbine support structures considering strain measurement and a joint distribution of oceanographic data[J]. Marine structures, 2019, 66(5): 307-322.
[8] PETROVSKA E, LE DREFF J B., OTERKUS S, et al. Application of structural monitoring data for fatigue life predictions of monopile-supported offshore wind turbines[C]//Proceedings of the 39th International Conference on Ocean, Offshore and Arctic Engineering. Virtual, Online, 2020.
[9] ZHAO Y, LI X L, WANG X W, et al.Fatigue life evaluation of wind turbine tower based on measured data[J]. Advances in civil engineering, 2023: 1100725.
[10] SUTHERLAND H J.On the fatigue analysis of wind turbines[M]. Albuquerque: Sandia National Laboratories, 1999.
[11] SADEGHI N, ROBBELEIN K, D’ANTUONO P, et al. Fatigue damage calculation of offshore wind turbines’ long-term data considering the low-frequency fatigue dynamics[J]. Journal of physics: conference series, 2022, 2265(3): 032063.
[12] AMZALLAG C, GEREY J P, ROBERT J L, et al.Standardization of the rainflow counting method for fatigue analysis[J]. International journal of fatigue, 1994, 16(4): 287-293.
[13] MARSH G .Fatigue load monitoring of offshore wind turbine support structures[D]. Glasgow, Scotland, UK: University of Strathclyde, 2016.
[14] 吕伟荣, 赵思钛, 姚帅, 等. 基础环式风力机基础在线监测与损伤评估方法研究[J]. 太阳能学报, 2023, 44(1): 265-272.
LYU W R, ZHAO S T, YAO S, et al.Research on method of on-line monitoring and damage assessment of wind turbine concrete foundations with embedded ring[J]. Acta energiae solaris sinica, 2023, 44(1): 265-272.
[15] MATSUISHI M, ENDO T.Fatigue of metals subjected to varying stress[C]//Japan Society of Mechanical Engineers. Fukuoka, Japan, 1968: 37-40.
[16] ASTM E 1049-85. Standard practices for cycle counting in fatigue analysis E 1049-85. Standard practices for cycle counting in fatigue analysis[S]. USA: Philadelphia, 1999.
[17] DNVGL-RP-C203. Fatigue design of offshore steel structures[S]. Norway: Det Norske Veritas, 2016.
[18] GOODMAN J.Mechanics applied to engineering[M]. London: Longmans, 1941.
[19] LOEW S, OBRADOVIC D.Formulation of fatigue dynamics as hybrid automaton for model predictive control[C]//The 21th World Congress of the International Federation of Automatic Control (IFAC). Berlin, Germany, 2020: 6616-6623.
[20] 赵艳, 杨哲, 王新武, 等. 过渡循环对风力机疲劳评估的影响及修正[J]. 振动与冲击, 2024, 43(3): 241-246, 275.
ZHAO Y, YANG Z, WANG X W, et al.Effects and correction of transition cycles on fatigue assessment of wind turbine[J]. Journal of vibration and shock, 2024,43(3): 241-246, 275.
基金
河南省科技攻关项目(242102320188; 242102320318; 242102321008); 河南省高等学校重点科研项目(24A560013)