水凝胶基太阳能蒸发器研究进展

姚兴洁, 刘佳, 陈飞勇, 张旭, 马良, 许兵

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 333-343.

PDF(2489 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2489 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 333-343. DOI: 10.19912/j.0254-0096.tynxb.2024-1024

水凝胶基太阳能蒸发器研究进展

  • 姚兴洁1,2, 刘佳3, 陈飞勇2, 张旭1, 马良4, 许兵1,2
作者信息 +

RESEARCH PROGRESS OF HYDROGEL-BASED SOLAR EVAPORATORS

  • Yao Xingjie1,2, Liu Jia3, Chen Feiyong2, Zhang Xu1, Ma Liang4, Xu Bing1,2
Author information +
文章历史 +

摘要

探索水分子在凝胶结构中的独特存在形式,并讨论通过改变水凝胶表面形貌来提高水蒸发效率的太阳能蒸发器的设计。最后,系统回顾将各种光热介质与水凝胶相结合的太阳能蒸发器的研究进展,并对其未来发展进行展望。

Abstract

This study explores the distinct forms in which water molecules exist within hydrogel structures and discusses the design of solar evaporators that enhance water evaporation efficiency by modifying the surface morphology of hydrogels. Finally, the research progress on solar evaporators that combine various photothermal media with hydrogels is systematically reviewed, and prospects for their future development are discussed.

关键词

水凝胶 / 海水淡化 / 太阳能转化 / 光吸收 / 形貌设计 / 水状态

Key words

hydrogels / sea water desalination / solar energy conversion / light absorption / morphology design / water status

引用本文

导出引用
姚兴洁, 刘佳, 陈飞勇, 张旭, 马良, 许兵. 水凝胶基太阳能蒸发器研究进展[J]. 太阳能学报. 2025, 46(10): 333-343 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1024
Yao Xingjie, Liu Jia, Chen Feiyong, Zhang Xu, Ma Liang, Xu Bing. RESEARCH PROGRESS OF HYDROGEL-BASED SOLAR EVAPORATORS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 333-343 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1024
中图分类号: P747   

参考文献

[1] DANG C Y, CAO Y T, NIE H J, et al.Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications[J]. Nature water, 2024, 2: 115-126.
[2] OKI T, KANAE S.Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
[3] HE C Y, LIU Z F, WU J G, et al.Future global urban water scarcity and potential solutions[J]. Nature communications, 2021, 12(1): 4667.
[4] VÖRÖSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
[5] LV H H, WANG Y, WU L Y, et al.Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination[J]. Desalination, 2019, 465: 69-78.
[6] VERBEKE R, GÓMEZ V, VANKELECOM I F J. Chlorine-resistance of reverse osmosis(RO) polyamide membranes[J]. Progress in polymer science, 2017, 72: 1-15.
[7] XUE Y, GE Z H, YANG L J, et al.Peak shaving performance of coal-fired power generating unit integrated with multi-effect distillation seawater desalination[J]. Applied energy, 2019, 250: 175-184.
[8] CUVIELLA-SUÁREZ C, COLMENAR-SANTOS A, BORGE-DIEZ D, et al. Heat recovery in sanitary-ware industry applied to water and energy saving by multi-effect distillation[J]. Journal of cleaner production, 2019, 213: 1322-1336.
[9] TAGHIPOUR A, RAMIREZ J A, BROWN R J, et al.A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects[J]. Renewable and sustainable energy reviews, 2019, 115: 109355.
[10] 刘强, 肖维新, 罗渊, 等. 高效海水淡化的太阳能界面蒸发器研究进展[J]. 太阳能学报, 2024, 45(3): 591-602.
LIU Q, XIAO W X, LUO Y, et al.Research progress of solar interface evaporator for efficient seawater desalination[J]. Acta energiae solaris sinica, 2024, 45(3): 591-602.
[11] GHASEMI H, NI G, MARCONNET A M, et al.Solar steam generation by heat localization[J]. Nature communications, 2014, 5: 4449.
[12] ZHOU L, LI X Q, NI G W, et al.The revival of thermal utilization from the Sun: interfacial solar vapor generation[J]. National science review, 2019, 6(3): 562-578.
[13] CHEN C J, KUANG Y D, HU L B.Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718.
[14] MENG F L, GAO M M, DING T P, et al.Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers[J]. Advanced functional materials, 2020, 30(32): 2002867.
[15] ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano energy, 2019, 57: 507-518.
[16] ZHOU L, TAN Y L, JI D X, et al.Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science advances, 2016, 2(4): e1501227.
[17] GUO C L, MIAO E D, ZHAO J X, et al.Paper-based integrated evaporation device for efficient solar steam generation through localized heating[J]. Solar energy, 2019, 188: 1283-1291.
[18] CAO P, ZHAO L M, YANG Z P, et al.Carbon nanotube network-based solar-thermal water evaporator and thermoelectric module for electricity generation[J]. ACS applied nano materials, 2021, 4(9): 8906-8912.
[19] 吴琳, 王军, 范奇, 等. 基于生物质碳的界面光热蒸发实验研究[J]. 太阳能学报, 2022, 43(11): 106-111.
WU L, WANG J, FAN Q, et al.Experimental study on interfacial photothermal evaporation based on biomass carbon[J]. Acta energiae solaris sinica, 2022, 43(11): 106-111.
[20] XU N, HU X Z, XU W C, et al.Mushrooms as efficient solar steam-generation devices[J]. Advanced materials, 2017, 29(28): 1606762-1606767.
[21] JIA C, LI Y J, YANG Z, et al.Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599.
[22] WANG H Q, DU A, JI X J, et al.Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS applied materials & interfaces, 2019, 11(45): 42057-42065.
[23] 周建华, 晏亚飞, 周梦园. MXene@聚多巴胺的制备、性能和应用[J]. 皮革科学与工程, 2024, 34(1): 18-23.
ZHOU J H, YAN Y F, ZHOU M Y.Preparation, properties and application of MXene@polydopamine[J]. Leather science and engineering, 2024, 34(1): 18-23.
[24] FANG Q L, LI T T, CHEN Z M, et al.Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS applied materials & interfaces, 2019, 11(11): 10672-10679.
[25] FAN Z F, REN J X, BAI H Y, et al.Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation[J]. Chemical engineering journal, 2023, 451: 138534.
[26] LI Y, LI Y Q, HUANG X B, et al.Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity[J]. Composites science and technology, 2020, 195: 108197.
[27] XIAO C H, LIANG W D, HASI Q M, et al.Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination[J]. Materials today energy, 2020, 16: 100417.
[28] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
[29] AHMED E M.Hydrogel: preparation, characterization, and applications: a review[J]. Journal of advanced research, 2015, 6(2): 105-121.
[30] ZHAO F, BAE J, ZHOU X Y, et al.Nanostructured functional hydrogels as an emerging platform for advanced energy technologies[J]. Advanced materials, 2018, 30(48): e1801796.
[31] YU Z, GU R N, ZHANG Y X, et al.High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel[J]. Nano energy, 2022, 98: 107287.
[32] POTKONJAK B, JOVANOVIĆ J, STANKOVIĆ B, et al.Comparative analyses on isothermal kinetics of water evaporation and hydrogel dehydration by a novel nucleation kinetics model[J]. Chemical engineering research and design, 2015, 100: 323-330.
[33] PEPPAS N, HILT J, KHADEMHOSSEINI A, et al.Hydrogels in biology and medicine: from molecular principles to bionanotechnology[J]. Advanced materials, 2006, 18(11): 1345-1360.
[34] PHADKE A, ZHANG C, ARMAN B, et al.Rapid self-healing hydrogels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4383-4388.
[35] CHU A Q, YANG M, CHEN J L, et al.Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination[J]. Green energy & environment, 2023
[36] WANG Z Y, ZHU Y J, CHEN Y Q, et al.Bioinspired aerogel with vertically ordered channels and low water evaporation enthalpy for high-efficiency salt-rejecting solar seawater desalination and wastewater purification[J]. Small, 2023, 19(19):2206917-2206931.
[37] LEI C X, GUAN W X, GUO Y H, et al.Polyzwitterionic hydrogels for highly efficient high salinity solar desalination[J]. Angewandte chemie, 2022, 61(36): e202208487.
[38] SONG C Y, IRSHAD M S, LI Z T, et al.Enhancing solar steam generation in hydrogel evaporator by bio-based microfluidic component[J]. Chemical engineering journal, 2023, 478: 146566.
[39] ZHOU X Y, ZHAO F, GUO Y H, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science advances, 2019, 5(6): eaaw5484.
[40] NAKAOKI T, YAMASHITA H.Bound states of water in poly(vinyl alcohol) hydrogel prepared by repeated freezing and melting method[J]. Journal of molecular structure, 2008, 875(1-3): 282-287.
[41] KUDO K, ISHIDA J, SYUU G, et al.Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration[J]. The journal of chemical physics, 2014, 140(4): 044909.
[42] HIRATA Y, MIURA Y, NAKAGAWA T.Oxygen permeability and the state of water in Nafion® membranes with alkali metal and amino sugar counterions[J]. Journal of membrane science, 1999, 163(2): 357-366.
[43] HATAKEYEMA T, YAMAUCHI A, HATAKEYEMA H.Studies on bound water in poly(vinyl alcohol). hydrogel by DSC and FT-NMR[J]. European polymer journal, 1984, 20(1): 61-64.
[44] ZHOU X Y, GUO Y H, ZHAO F, et al.Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment[J]. Advanced materials, 2020, 32(52): e2007012.
[45] GUO Y H, YU G H.Engineering hydrogels for efficient solar desalination and water purification[J]. Accounts of materials research, 2021, 2(5): 374-384.
[46] SUN Z Q, WANG M, MU X J, et al.Sustainable β-cyclodextrin modified polyacrylamide hydrogel for highly efficient solar-driven water purification[J]. Materials today energy, 2023, 35: 101330.
[47] ZHOU X Y, GUO Y H, ZHAO F, et al.Hydrogels as an emerging material platform for solar water purification[J]. Accounts of chemical research, 2019, 52(11): 3244-3253.
[48] LUO Y N, FU B W, SHEN Q C, et al.Patterned surfaces for solar-driven interfacial evaporation[J]. ACS applied materials & interfaces, 2019, 11(7): 7584-7590.
[49] WANG X, LIU Q C, WU S Y, et al.Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced materials, 2019, 31(19): e1807716.
[50] LEI C X, PARK J, GUAN W X, et al.Biomimetically assembled sponge-like hydrogels for efficient solar water purification[J]. Advanced functional materials, 2023, 33(38): 2303883.
[51] GUO Y H, ZHAO X, ZHAO F, et al.Tailoring surface wetting states for ultrafast solar-driven water evaporation[J]. Energy & environmental science, 2020, 13(7): 2087-2095.
[52] GUO Y H, ZHAO F, ZHOU X Y, et al.Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J]. Nano letters, 2019, 19(4): 2530-2536.
[53] MA C, LIU Q L, PENG Q Q, et al.Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices[J]. ACS nano, 2021, 15(12): 19877-19887.
[54] XU T, XU Y X, WANG J Y, et al.Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel[J]. Chemical engineering journal, 2021, 415: 128893.
[55] XU J L, WANG G, ZHU L J, et al.Superwetting reduced graphene oxide/alginate hydrogel sponge with low evaporation enthalpy for highly efficient solar-driven water purification[J]. Chemical engineering journal, 2023, 455: 140704.
[56] JIANG S, ZHANG Z Z, ZHOU T, et al.Lignin hydrogel-based solar-driven evaporator for cost-effective and highly efficient water purification[J]. Desalination, 2022, 531: 115706.
[57] CUI X M, RUAN Q F, ZHUO X L, et al.Photothermal nanomaterials: a powerful light-to-heat converter[J]. Chemical reviews, 2023, 123(11): 6891-6952.
[58] ZHANG B P, WONG P W, AN A K.Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification[J]. Chemical engineering journal, 2022, 430: 133054.
[59] ZHOU X Y, ZHAO F, GUO Y H, et al.A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & environmental science, 2018, 11(8): 1985-1992.
[60] GENG H Y, XU Q, WU M M, et al.Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production[J]. Nature communications, 2019, 10(1): 1512.
[61] JUODKAZIS S, MUKAI N, WAKAKI R, et al.Reversible phase transitions in polymer gels induced by radiation forces[J]. Nature, 2000, 408(6809): 178-181.
[62] CHEN L, DING Y, GONG J, et al.Molecular engineering of biomass-derived hybrid hydrogels for solar water purification[J]. Journal of colloid and interface science, 2022, 626: 231-240.
[63] HE J X, FAN Y K, XIAO C H, et al.Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites science and technology, 2021, 204: 108633.
[64] ZHANG X, CONG H B, MA L, et al.Jellyfish-inspired sustainable and facile porous zwitterionic hydrogel sponge for efficient solar thermal desalination and water purification[J]. Chemical engineering journal, 2024, 487: 150754.
[65] 杨兆华, 成鸿静, 杨弋, 等. 聚乙烯醇载银海绵的制备及界面光热驱动水蒸发性能[J]. 高等学校化学学报, 2022, 43(10): 68-74.
YANG Z H, CHENG H J, YANG Y, et al.Preparation of silver-loaded polyvinyl alcohol sponge and its interfacial photothermal driven water evaporation performance[J]. Chemical journal of Chinese Universities, 2022, 43(10): 68-74.
[66] ZHAO J M, CHU A Q, CHEN J L, et al.Spongy polyelectolyte hydrogel for efficient Solar-Driven interfacial evaporation with high salt resistance and compression resistance[J]. Chemical engineering journal, 2024, 485: 150118.
[67] GUO Y H, LU H Y, ZHAO F, et al.Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced materials, 2020, 32(11): e1907061.
[68] WANG Z X, WU X C, DONG J M, et al.Porifera-inspired cost-effective and scalable “porous hydrogel sponge” for durable and highly efficient solar-driven desalination[J]. Chemical engineering journal, 2022, 427: 130905.
[69] LI L, LI H, MENG L Z, et al.Three dimensional hydrogel evaporator made of nano level antireflection particles for high-efficiency solar steam generation[J]. Sustainable energy technologies and assessments, 2022, 52: 102074.
[70] LI H, GAO S Y, DING H, et al.Double-plasma Ti3C2Tx/Ag@SiO2 gel micro-/ nanoporous structures for improved water transport and efficient solar steam generation[J]. ACS applied energy materials, 2023, 6(11): 5989-5996.
[71] AGUILAR-FERRER D, VASILEIADIS T, IATSUNSKYI I, et al.Understanding the photothermal and photocatalytic mechanism of polydopamine coated gold nanorods[J]. Advanced functional materials, 2023, 33(43): 2304208.
[72] LIU X J, TIAN Y P, WU Y Z, et al.Seawater desalination derived entirely from ocean biomass[J]. Journal of materials chemistry A, 2021, 9(39): 22313-22324.
[73] ZHAO X, CHEN Y Y, YIN Y, et al.Janus polypyrrole Nanobelt@Polyvinyl alcohol hydrogel evaporator for robust solar-thermal seawater desalination and sewage purification[J]. ACS applied materials & interfaces, 2021, 13(39): 46717-46726.
[74] WEI Z C, WANG Y B, CAI C Y, et al.Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard-Marangoni effect[J]. Advanced functional materials, 2022, 32(41): 2206287.

PDF(2489 KB)

Accesses

Citation

Detail

段落导航
相关文章

/