PEMFC组合流场结构设计与性能优化模拟研究

付丽荣, 林华栋, 宫鹏华, 刘进一, 肖明伟

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 147-153.

PDF(1938 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1938 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 147-153. DOI: 10.19912/j.0254-0096.tynxb.2024-1029

PEMFC组合流场结构设计与性能优化模拟研究

  • 付丽荣, 林华栋, 宫鹏华, 刘进一, 肖明伟
作者信息 +

SIMULATION STUDY ON STRUCTURAL DESIGN AND PERFORMANCE OPTIMIZATION OF PEMFC COMBINED FLOW FIELD

  • Fu Lirong, Lin Huadong, Gong Penghua, Liu Jinyi, Xiao Mingwei
Author information +
文章历史 +

摘要

该研究建立质子交换膜燃料电池组合流场的三维模型,并探究流场的操作条件和几何参数对电池性能的影响。结果表明:斜坡流场的氧气和电流密度分布较平行和蛇形流场更均匀,电池输出功率密度分别比蛇形流场和平行流场提升了7.43%和12.05%。提高工作压力可增加流道的氧气浓度进而提升电池输出性能,而温度对电池性能的影响受流场结构的制约较小。当流场的流道数量过少会造成氧气分布不均从而降低电池输出性能,提高流道肋宽比能提升输出性能,但流道宽高比的提高对性能影响较小。

Abstract

This study developed a three-dimensional model of a composite flow field in proton exchange membrane fuel cells (PEMFCs) to investigate the effects of operating conditions and geometric parameters of the flow field on cell performance. The findings reveal that oxygen distribution and current density in the inclined flow field are more uniform compared to the parallel and serpentine flow fields. The cell’s power density output is improved by 7.43% and 12.05% in the inclined flow field relative to the serpentine and parallel configurations, respectively. Higher operating pressures increase oxygen concentration within the channels, leading to enhanced cell output performance, while temperature shows a relatively minor influence due to the structural limitations of the flow field. A reduced number of channels in the flow field leads to uneven oxygen distribution, thereby diminishing the cell's performance. Increasing the rib-to-channel width ratio improves output performance, while changes in the channel aspect ratio show minimal impact on performance.

关键词

质子交换膜燃料电池 / 流场 / 数值模型 / 结构优化

Key words

proton exchange membrane fuel cells / flow field / numerical model / structural optimization

引用本文

导出引用
付丽荣, 林华栋, 宫鹏华, 刘进一, 肖明伟. PEMFC组合流场结构设计与性能优化模拟研究[J]. 太阳能学报. 2025, 46(10): 147-153 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1029
Fu Lirong, Lin Huadong, Gong Penghua, Liu Jinyi, Xiao Mingwei. SIMULATION STUDY ON STRUCTURAL DESIGN AND PERFORMANCE OPTIMIZATION OF PEMFC COMBINED FLOW FIELD[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 147-153 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1029
中图分类号: TM911.4   

参考文献

[1] 邵明标. 燃料电池的发展趋势及应用前景综述[J]. 山东化工, 2019, 48(23): 71-73.
SHAO M B.Development trend and application prospect of fuel cell[J]. Shandong chemical industry, 2019, 48(23): 71-73.
[2] 王万腾, 李楠, 许宏鹏, 等. 基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究[J]. 太阳能学报, 2022, 43(6): 448-453.
WANG W T, LI N, XU H P, et al.Study on improving performance of PEMFC by flow channel based on nautilus bionic structure[J]. Acta energiae solaris sinica, 2022, 43(6): 448-453.
[3] LI W K, ZHANG Q L, WANG C, et al.Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J]. Applied energy, 2017, 195: 278-288.
[4] 武生威, 付丽荣, 刘维峰, 等. 新型拓展流道PEMFC传质模拟与性能研究[J]. 太阳能学报, 2023, 44(5): 74-79.
WU S W, FU L R, LIU W F, et al.Mass transfer simulation and performance study of PEMFC with new extended flow channel[J]. Acta energiae solaris sinica, 2023, 44(5): 74-79.
[5] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[6] 赵富强, 祁慧青, 范晓宇, 等. PEMFC新型压差流道传质与电化学性能研究[J]. 电源学报, 2023, 21(4): 148-158.
ZHAO F Q, QI H Q, FAN X Y, et al.Study on mass transfer and electrochemical performance of PEMFC with novel differential pressure flow channel[J]. Journal of power supply, 2023, 21(4): 148-158.
[7] KANG D G, LEE D K, CHOI J M, et al.Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell[J]. Renewable energy, 2020, 156: 931-941.
[8] GHASABEHI M, ASHRAFI M, SHAMS M.Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation[J]. Fuel, 2021, 285: 119194.
[9] 李政翰, 涂正凯. 质子交换膜燃料电池仿真模型研究进展[J]. 化工进展, 2022, 41(10): 5272-5296.
LI Z H, TU Z K.Research progress of simulation models of proton exchange membrane fuel cell[J]. Chemical industry and engineering progress, 2022, 41(10): 5272-5296.
[10] DENG M L, ZHANG Q W, HUANG Y K, et al.Integration and optimization for a PEMFC and PSA oxygen production combined system[J]. Energy conversion and management, 2021, 236: 114062.
[11] UBONG E U, SHI Z, WANG X.Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell[J]. Journal of the Electrochemical Society, 2009, 156(10): B1276.

基金

国家自然科学基金(52366014); 海南省自然科学基金(521RC492); 海南省教育厅项目(Qhys2023-86)

PDF(1938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/