以太阳能热辅助660 MW光煤互补发电系统为研究对象,建立光煤互补发电系统的动态仿真模型,针对6种典型的光煤互补发电系统运行方案,研究熔融盐储热及太阳能热引入对光煤互补发电系统动态响应规律的影响。结果表明:在满足机组安全运行的条件下,对比3种系统降负荷方案,抽主蒸汽-排汽进凝汽器方案的调峰容量和变负荷速率最大,分别可达56.5 MW和6.7%Pe/min(Pe为机组额定功率);对比2种系统升负荷方案,熔融盐加热给水旁路方案的调峰容量最大,可达32.4 MW,熔融盐加热凝结水旁路方案的变负荷速率最大,可达8.45%Pe/min;对比3种不同太阳能热引入光煤互补发电系统方案下的标准煤耗率变化,其中采用熔融盐加热进入锅炉给水方案的节煤效果最好,标准煤耗率最多可减少25.47 g/kWh,且光煤互补发电系统发电功率越高,节煤量越大。
Abstract
Taking the complementary power generation system of a 660 MW coal-fired unit assisted by solar thermal energy as the research object, a dynamic simulation model was established for the solar hybrid coal power generation system. Based on this, the impacts of the molten salt storage and solar energy integration on the dynamic response of the solar hybrid coal power generation system were discussed through 6 typical operational schemes. The results show that: under safe operating conditions, comparing the three load reduction schemes, the peaking capacity and load changing rate of solar hybrid coal power generations system are the largest under the operation condition of main steam being extracted and exhaust steam entering the condenser, which can reach 56.5 MW and 6.7%Pe/min respectively; comparing the two system load increase schemes, the molten salt heating feedwater bypass scheme demonstrates superior peaking capacity (up to 32.4 MW), while the molten salt heating condensate bypass scheme exhibits a higher load changing rate (up to 8.45%Pe/min). Comparing the change of standard coal consumption rate under three different solar heat introduction complementary system schemes, the use of molten salt heating boiler feedwater coal saving effect is the best, the standard coal consumption rate can be reduced by 25.47 g/kWh at most, and the higher generated power of solar hybrid coal power generation system, the greater the coal saving rate.
关键词
太阳能 /
燃煤电厂 /
熔融盐 /
调峰 /
灵活性 /
动态仿真
Key words
solar energy /
coal fired power plant /
molten salt /
peak-regulation /
flexibility /
dynamic simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家能源局.国家能源局发布2025年1-8月份全国电力工业统计数据,风光装机约17亿千瓦[EB/OL]. (2025-09-26)[2025-10-18]. https://www.nea.gov.cn/20250926/2e8ea0184702461f8531527b015964d5/c.html.
National Energy Administration. National energy administration releases statistical data on national electric power industry from January to August2025, with wind and solar power installed capacity reaching approximately 1.7 billion kilowatts[EB/OL].(2025-09-26) [2025-10-18]. https://www.nea.gov.cn/20250926/2e8ea0184702461f8531527b015964d5/c.html.
[2] WU J J, HAN Y, HOU H J.A new solar share evaluation method of solar aided power generation (SAPG) system by tracing exergy flows and allocating exergy destruction[J]. Solar energy, 2020, 198: 542-554.
[3] 严卉, 刘明, 种道彤, 等. 光煤互补发电系统变工况能势匹配分析[J]. 工程热物理学报, 2023, 44(11): 2981-2990.
YAN H, LIU M, CHONG D T, et al.Energy potential matching analysis of solar-aided coal-fired power plant under off-design conditions[J]. Journal of engineering thermophysics, 2023, 44(11): 2981-2990.
[4] 周璐璐, 王军, 邴旖旎, 等. 太阳能辅助的燃煤机组经济性分析[J]. 太阳能学报, 2021, 42(10): 105-110.
ZHOU L L, WANG J, BING Y N, et al.Economic analysis of solar energy aided coal-fired power system[J]. Acta energiae solaris sinica, 2021, 42(10): 105-110.
[5] 肖艳红, 郭田, 余廷芳. 两种运行模式下光煤互补发电系统热性能对比分析[J]. 太阳能学报, 2023, 44(5): 121-127.
XIAO Y H, GUO T, YU T F.Thermal performance analysis of solar-aided coal-fired power generation system under two typical operation modes[J]. Acta energiae solaris sinica, 2023, 44(5): 121-127.
[6] 侯宏娟, 王学伟, 宋红, 等. 太阳能辅助330 MW燃煤机组互补发电系统动态特性及年性能分析[J]. 太阳能学报, 2018, 39(12): 3331-3338.
HOU H J, WANG X W, SONG H, et al.Dynamic characteristic and annual performance analysis of solar assisted 330 MW coal-fired unit hybrid power generation system[J]. Acta energiae solaris sinica, 2018, 39(12): 3331-3338.
[7] ZHANG N, HOU H J, YU G, et al.Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode[J]. Energy, 2019, 166: 918-928.
[8] 杨勇平, 侯宏娟. 太阳能热发电与燃煤互补技术[R]. 北京: 华北电力大学, 2020.
YANG Y P, HOU H J.Complementary technology of solar thermal power generation and coal-fired power generation [R]. Beijing: North China Electric Power University, 2020.
[9] 中国能源报. 东锅煤光互补发电技术首役告捷[EB/OL]. (2015-10-16) [2024-06-16] https://www.cspplaza.com/article-6617-1.html.
China Energy News. Dongfang boiler's coal-solar complementary power generation technology achieves initial success[EB/OL]. (2015-10-16)[2024-06-16]. https://www.cspplaza.com/article-6617-1.html.
[10] CSPPLAZA光热发电网. 新思路!燃煤电厂或可借储热型光热发电技术“延年益寿”[EB/OL]. (2020-04-07) [2024-06-16]. https://www.cspplaza.com/article-17705-1.html.
CSPPLAZA Solar Thermal Power Generation Network. A new idea! Coal-fired power plants may extend their service life via thermal energy storage-based solar thermal power generation technology [EB/OL]. (2020-04-07) [2024-06-16]. https://www.cspplaza.com/article-17705-1.html.
[11] 程延武. 600 MW火电机组动态特性仿真研究[D]. 北京: 华北电力大学, 2014.
CHENG Y W.Simulation research on dynamic characteristics of 600 MW thermal power unit[D]. Beijing: North China Electric Power University, 2014.
[12] 耿察民, 杨小龙, 王亚欧, 等. 火储联合调峰调频供热系统协同控制研究[J]. 汽轮机技术, 2023, 65(6): 455-460.
GENG C M, YANG X L, WANG Y O, et al.Research on coordinated control of power plant integrated with molten salt storage for peak load regulation and frequency control and heat supply[J]. Turbine technology, 2023, 65(6): 455-460.
[13] PATNODE, ANGELA M.Simulation and performance evaluation of parabolic trough solar power plants[D]. Madison, Wisconsin:University of Wisconsin-Madison, 2006.
[14] 梁惠勋, 庞力平, 段立强, 等. 高温熔盐储能提升燃煤机组动态响应的分析[J]. 发电设备, 2024, 38(2): 67-75, 81.
LIANG H X, PANG L P, DUAN L Q, et al.Analysis on the improvement for dynamic response of a coal-fired unit with high-temperature molten salt energy storage[J]. Power equipment, 2024, 38(2): 67-75, 81.
[15] 冀帅宇, 段立强, 王远慧, 等. 典型燃煤机组灵活调峰策略及性能研究[J]. 热力发电, 2023, 52(9): 94-103.
JI S Y, DUAN L Q, WANG Y H, et al.Research on flexible peak load regulation strategy and performance of typical coal-fired units[J]. Thermal power generation, 2023, 52(9): 94-103.
[16] 黄畅. 槽式太阳能热与燃煤互补发电系统动态特性仿真研究[D]. 北京: 华北电力大学, 2020.
HUANG C.Simulation research on dynamic characteristics of parabolic trough solar aided coal-fired power generation system[D]. Beijing: North China Electric Power University, 2020.
[17] 陈欢乐, 归一数, 陈伟, 等. 基于零号高压加热器的深度调峰控制策略研究[J]. 热能动力工程, 2023, 38(1): 98-103.
CHEN H L, GUI Y S, CHEN W, et al.Research on deep peak regulation control strategy based on No.0 high pressure heater[J]. Journal of engineering for thermal energy and power, 2023, 38(1): 98-103.
[18] 蒋晓锋, 陶有宏, 陶丽, 等. 零号高加式宽负荷脱硝技术节能解析[J]. 动力工程学报, 2020, 40(10): 832-837.
JIANG X F, TAO Y H, TAO L, et al.Energy saving analysis of wide load denitration technology with No.0 HP heater[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 832-837.
基金
北京市自然科学基金(3222042); 国家重点研发计划(2022YFB4202405); 内蒙古自治区科技计划(2023YFHH0127)