非均匀流道PEMFC传质模拟与性能研究

王乃潇, 程友良, 丁瑞, 樊小朝

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 173-179.

PDF(2208 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2208 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 173-179. DOI: 10.19912/j.0254-0096.tynxb.2024-1062

非均匀流道PEMFC传质模拟与性能研究

  • 王乃潇1,2, 程友良1,2, 丁瑞1,2, 樊小朝3
作者信息 +

MASS TRANSFER SIMULATION AND PERFORMANCE STUDY OF PEMFC WITH NON-UNIFORM FLOW CHANNEL

  • Wang Naixiao1,2, Cheng Youliang1,2, Ding Rui1,2, Fan Xiaochao3
Author information +
文章历史 +

摘要

在传统蛇形流道的基础上,提出交变式、渐变式、喇叭式及分散式等非均匀样式的流道结构,通过建立等温、稳态质子交换膜燃料电池(PEMFC)三维仿真模型,分析非均匀流道对PEMFC传质及输出性能的影响。结果表明,相比普通蛇形流道,非均匀流道可有效改善流道内反应气体及产物的输运与分布,强化电化学反应过程,具有更高的膜电流密度,且可进一步平衡输运性能与压力损失匹配,有效提高PEMFC能量利用效率。其中,多样性分散流道(MD-Ⅵ)使PEMFC峰值电流密度提高10.2%,峰值功率密度提高14.2%,非均匀设计有望为PEMFC流道结构创新及优化提供更多思路。

Abstract

Based on the traditional serpentine flow channel, several non-uniform flow channel structures with alternating, gradient, trumpet, and dispersed types were proposed in this paper. By establishing a three-dimensional isothermal steady-state PEMFC simulation model, the effects of non-uniform flow channels on the mass transfer characteristics and output performance of PEMFCs were analyzed. The results show that compared to the conventional serpentine flow channel, non-uniform designs can effectively improve the transport and distribution of reactant gases and products within the flow channel, enhance the electrochemical reaction process, and achieve higher membrane current densities. Furthermore, these designs can better balance transport performance and pressure loss matching, effectively improving the energy utilization efficiency of PEMFCs. Specifically, the MD-Ⅵ flow channel increases the peak current density of PEMFCs by 10.2% and the peak power density by 14.2%. The non-uniform designs are expected to provide more ideas for the innovation and optimization of PEMFC flow channel structures.

关键词

氢能 / 质子交换膜燃料电池 / 非均匀流道 / 数值模拟 / 输出性能 / 传质

Key words

hydrogen energy / PEMFC / non-uniform flow channel / numerical simulation / output performance / mass transfer

引用本文

导出引用
王乃潇, 程友良, 丁瑞, 樊小朝. 非均匀流道PEMFC传质模拟与性能研究[J]. 太阳能学报. 2025, 46(10): 173-179 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1062
Wang Naixiao, Cheng Youliang, Ding Rui, Fan Xiaochao. MASS TRANSFER SIMULATION AND PERFORMANCE STUDY OF PEMFC WITH NON-UNIFORM FLOW CHANNEL[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 173-179 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1062
中图分类号: TM911.48   

参考文献

[1] 王红星, 王宇新. PEMFC流场的数学模拟[J]. 天津大学学报, 2007, 40(11): 1313-1318.
WANG H X, WANG Y X.Mathematical simulation of flow field of PEMFC[J]. Journal of Tianjin University, 2007, 40(11): 1313-1318.
[2] OUELLETTE D, OZDEN A, ERCELIK M, et al.Assessment of different bio-inspired flow fields for direct methanol fuel cells through 3D modeling and experimental studies[J]. International journal of hydrogen energy, 2018, 43(2): 1152-1170.
[3] BADDURI S R, SRINIVASULU G N, RAO S S.Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell[J]. Chinese journal of chemical engineering, 2020, 28(3): 824-831.
[4] CAI G C, LIANG Y M, LIU Z C, et al.Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm[J]. Energy, 2020, 192: 116670.
[5] HE L, HOU M, GAO Y Y, et al.Experimental study of the S-shaped flow fields in proton exchange membrane fuel cells[J]. Energy conversion and management, 2020, 223: 113292.
[6] YAN F Y, PEI X J, YAO J.Numerical simulation of performance improvement of PEMFC by four-serpentine wave flow field[J]. Ionics, 2023, 29(2): 695-709.
[7] 武生威, 付丽荣, 刘维峰, 等. 新型拓展流道PEMFC传质模拟与性能研究[J]. 太阳能学报, 2023, 44(5):74-79.
WU S W, FU L R, LIU W F, et al.Mass transfer simulation and performance study of PEMFC with new extended flow channel[J]. Acta energiae solaris sinica, 2023, 44(5):74-79.
[8] 刘轲轲, 刘永峰, 裴普成, 等. 基于科赫曲线的PEMFC新型流道设计[J]. 储能科学与技术, 2023, 12(11): 3361-3368.
LIU K K, LIU Y F, PEI P C, et al.Design of a novel flow channel structure of PEMFC based on Koch snowflake[J]. Energy storage science and technology, 2023, 12(11): 3361-3368.
[9] 李楠, 张瑾辉, 徐瑞阳. 迷宫式新型流道对质子交换膜燃料电池的性能优化[J]. 科学技术与工程, 2024, 24(8): 3229-3235.
LI N, ZHANG J H, XU R Y.Performance optimization of a new labyrinth runner for PEMFC[J]. Science technology and engineering, 2024, 24(8): 3229-3235.
[10] MAHMOUDIMEHR J, DARYADEL A.Influences of feeding conditions and objective function on the optimal design of gas flow channel of a PEM fuel cell[J]. International journal of hydrogen energy, 2017, 42(36): 23141-23159.
[11] MOHAMMEDI A, SAHLI Y, BEN MOUSSA H.3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels[J]. Fuel, 2020, 263: 116713.
[12] RAHIMI-ESBO M, RANJBAR A A, RAMIAR A, et al.Improving PEM fuel cell performance and effective water removal by using a novel gas flow field[J]. International journal of hydrogen energy, 2016, 41(4): 3023-3037.
[13] ZHANG T Y, LI J, LI Q, et al.Combination effects of flow field structure and assembly force on performance of high temperature proton exchange membrane fuel cells[J]. International journal of energy research, 2021, 45(5): 7903-7917.
[14] HEIDARY H, KERMANI M J, PRASAD A K, et al.Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells[J]. International journal of hydrogen energy, 2017, 42(4): 2265-2277.
[15] LI W Z, YANG W W, WANG N, et al.Optimization of blocked channel design for a proton exchange membrane fuel cell by coupled genetic algorithm and three-dimensional CFD modeling[J]. International journal of hydrogen energy, 2020, 45(35): 17759-17770.
[16] 秦灏, 章桐. 探究蛇形流道PEM燃料电池阴极压降变化规律[J]. 内燃机与配件, 2023(10): 1-5.
QIN H, ZHANG T.Investigating the variation of cathode pressure drop in serpentine flow channel PEM fule cells[J]. Internal combustion engine & parts, 2023(10): 1-5.
[17] 谢启真, 郑明刚. PEMFC叶脉型仿生流道夹角参数研究[J]. 太阳能学报, 2021, 42(10): 361-366.
XIE Q Z, ZHENG M G.Research on flow channel angle parameters of bionic leaf-vein in PEMFC[J]. Acta energiae solaris sinica, 2021, 42(10): 361-366.
[18] YIN Y, WU S Y, QIN Y Z, et al.Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell[J]. Applied energy, 2020, 271: 115257.
[19] CHANG H M, LIN C W, CHANG M H, et al.Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell[J]. Journal of power sources, 2011, 196(8): 3773-3780.
[20] DONG P C, XIE G N, NI M.The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell[J]. Energy, 2020, 206: 117977.

基金

国家自然科学基金(52266018); 新疆工程学院博士启动金项目(2023XGYBQJ01); 新疆天山英才—青年科技拔尖人才项目(2022TSYCCX0051)

PDF(2208 KB)

Accesses

Citation

Detail

段落导航
相关文章

/