基于光伏光热技术的PEM制氢系统运行策略研究

文浩宇, 孙金栋, 汪材竹, 尹骞, 樊家慈

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 501-508.

PDF(1455 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1455 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 501-508. DOI: 10.19912/j.0254-0096.tynxb.2024-1088

基于光伏光热技术的PEM制氢系统运行策略研究

  • 文浩宇, 孙金栋, 汪材竹, 尹骞, 樊家慈
作者信息 +

STUDY ON OPERATION STRATEGY OF PEM HYDROGEN PRODUCTION SYSTEM BASED ON PHOTOVOLTAIC PHOTOTHERMAL TECHNOLOGY

  • Wen Haoyu, Sun Jindong, Wang Caizhu, Yin Qian, Fan Jiaci
Author information +
文章历史 +

摘要

基于质子交换膜(PEM)制氢模式,通过建立光伏系统模型与PEM制氢系统模型、搭建不同耦合方式的光伏光热PEM电解水制氢实验系统,开展光伏、光热耦合PEM制氢系统运行策略的研究。模拟与实验结果表明,直接耦合光伏制氢系统的制氢速度随太阳辐照度的变化而变化,在相同工况下,系统损耗更小,但制氢稳定性较差;间接耦合系统几乎不受天气影响,系统可稳定持续制氢,但系统较为复杂;独立光热系统更易保证电解液温度在50~80 ℃。

Abstract

Based on the PEM hydrogen production model, develop models for both PV and PEM hydrogen production systems, and construct experimental setups for photovoltaic and photothermal PEM water electrolysis (PVPT-PEM)with various coupling configurations to explore the operational strategies of PV and photothermal-coupled PEM hydrogen production systems. Simulation and experimental results show that the hydrogen production rate of the direct-coupled PV system varies with solar irradiance. Under the same operating conditions, this system shows lower losses but suffers from reduced hydrogen production stability. In contrast, the indirect-coupled system is less affected by weather conditions, allowing for stable and continuous hydrogen production, although with increased system complexity. The independent photothermal system more effectively maintains the electrolyte temperature within the range of 50-80 ℃.

关键词

太阳能 / 电解槽 / 制氢 / 光伏 / 光热 / 质子交换膜

Key words

solar energy / electrolytic cell / hydrogen production / photovoltaics / photothermal / PEM

引用本文

导出引用
文浩宇, 孙金栋, 汪材竹, 尹骞, 樊家慈. 基于光伏光热技术的PEM制氢系统运行策略研究[J]. 太阳能学报. 2025, 46(10): 501-508 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1088
Wen Haoyu, Sun Jindong, Wang Caizhu, Yin Qian, Fan Jiaci. STUDY ON OPERATION STRATEGY OF PEM HYDROGEN PRODUCTION SYSTEM BASED ON PHOTOVOLTAIC PHOTOTHERMAL TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 501-508 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1088
中图分类号: TM615    TQ116.2   

参考文献

[1] WANG H S, LI W J, LIU T, et al.Thermodynamic analysis and optimization of photovoltaic/thermal hybrid hydrogen generation system based on complementary combination of photovoltaic cells and proton exchange membrane electrolyzer[J]. Energy conversion and management, 2019, 183: 97-108.
[2] BOCKRIS J O.The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. International journal of hydrogen energy, 2002, 27(7/8): 731-740.
[3] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920.
[4] TURNER J A.Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[5] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[6] 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019, 7(3): 287-294.
GUO C Q, YI L Q, YAN C F, et al.Optimization of photovoltaic-PEM electrolyzer direct coupling systems[J]. Advances in new and renewable energy, 2019, 7(3): 287-294.
[7] FERRARI M L, RIVAROLO M, MASSARDO A F.Hydrogen production system from photovoltaic panels: experimental characterization and size optimization[J]. Energy conversion and management, 2016, 116: 194-202.
[8] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Optimized method for photovoltaic-water electrolyser direct coupling[J]. International journal of hydrogen energy, 2011, 36(17): 10574-10586.
[9] 苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报, 2022, 43(6): 521-529.
SU X, XU L J, HU B.Modelling and analysis of photovoltaic PEM hydrogen production system considering multivariable factors[J]. Acta energiae solaris sinica, 2022, 43(6): 521-529.
[10] 施正荣, 翁楚, 蔡靖雍, 等. 基于PV/T的质子交换膜电解制氢系统动态性能研究[J]. 太阳能学报, 2023, 44(8): 164-170.
SHI Z R, WENG C, CAI J Y, et al.Study on dynamic performance of PV/T based on proton exchange membrane water electrolysis system[J]. Acta energiae solaris sinica, 2023, 44(8): 164-170.
[11] 陈玉芳, 周立丽. 光伏-超级电容器-制氢混合系统的建模与控制[J]. 现代电力, 2017, 34(3): 88-94.
CHEN Y F, ZHOU L L.Modeling and control of hybrid PV-supercapacitor-hydrogen system[J]. Modern electric power, 2017, 34(3): 88-94.
[12] 李建林, 赵文鼎, 梁忠豪, 等. 光储一体化耦合制氢系统控制策略及仿真分析[J]. 热力发电, 2022, 51(11): 148-155.
LI J L, ZHAO W D, LIANG Z H, et al.Control strategy and simulation analysis of coupled optical storage systems for hydrogen production[J]. Thermal power generation, 2022, 51(11): 148-155.
[13] 张顺星, 苑易伟, 胡平, 等. 光伏-PEM直接耦合电解水制氢系统研究[J]. 工业仪表与自动化装置, 2022(3): 49-52.
ZHANG S X, YUAN Y W, HU P, et al.Research on photovoltaic-PEM electrolytic water hydrogen direct coupling system[J]. Industrial instrumentation & automation, 2022(3): 49-52.
[14] 戴凡博. PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究[D]. 杭州: 浙江大学, 2020.
DAI F B.Study of catalyst in PEM water electrolysis and directly coupling photovoltaic system simulation[D]. Hangzhou: Zhejiang University, 2020.
[15] 徐桂芝, 梁丹曦, 宋洁, 等. 基于最大功率点跟踪与储能补偿的光伏-制氢系统研究[J]. 热力发电, 2022, 51(11): 156-163.
XU G Z, LIANG D X, SONG J, et al.Photovoltaic hydrogen production system based on MPPT and energy storage compensation[J]. Thermal power generation, 2022, 51(11): 156-163.
[16] HASAN M A, PARIDA S K.An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint[J]. Renewable and sustainable energy reviews, 2016, 60: 75-83.
[17] 王川川, 孙霞, 钱辉, 等. 基于电压自寻优扰动的光伏MPPT算法[J]. 电子技术应用, 2016, 42(7): 142-145.
WANG C C, SUN X, QIAN H, et al.Study on MPPT of self seeking optimal perturbation method[J]. Application of electronic technique, 2016, 42(7): 142-145.
[18] 唐国强. 光伏微电网混合储能系统控制策略研究[D].淮南: 安徽理工大学, 2019.
TANG G Q.Research on control strategy of hybrid energy storage system in photovoltaic microgrid[D]. Huainan: Anhui University of Science & Technology, 2019.
[19] 李文磊. 风光互补发电储能制氢系统研究[D]. 邯郸: 河北工程大学, 2019.
LI W L.Research on hydrogen production system of wind-solar complementary power generation[D]. Handan: Hebei University of Engineering, 2019.

PDF(1455 KB)

Accesses

Citation

Detail

段落导航
相关文章

/