木质纤维素类生物质与微藻共热解过程协同效应及生物炭结构演变规律研究

王岩, 朱贤青, 黄云, 许勉, 朱恂, 廖强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 1-12.

PDF(4661 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4661 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 1-12. DOI: 10.19912/j.0254-0096.tynxb.2024-1109

木质纤维素类生物质与微藻共热解过程协同效应及生物炭结构演变规律研究

  • 王岩1,2, 朱贤青1,2, 黄云1,2, 许勉1,2, 朱恂1,2, 廖强1,2
作者信息 +

INVESTIGATION ON STRUCTURE EVOLUTION OF BIOCHAR AND SYNERGISTIC EFFECT DURING CO-PYROLYSIS PROCESS OF LIGNOCELLULOSIC BIOMASS AND MICROALGAE

  • Wang Yan1,2, Zhu Xianqing1,2, Huang Yun1,2, Xu Mian1,2, Zhu Xun1,2, Liao Qiang1,2
Author information +
文章历史 +

摘要

探究热解温度和原料质量混合比对木质纤维素类生物质与微藻共热解生物炭的产率、元素组成、表面形貌、热稳定性、孔隙分布、表面官能团组成及碳骨架结构的影响规律,并进一步揭示共热解过程中的协同效应及反应机理。结果表明,热解温度和原料质量混合比对共热解生物炭的产率以及理化结构均具有显著影响。生物炭产率随热解温度的升高而下降,并随微藻质量混合比的增加而增大。共热解生物炭的产率(质量分数)可达41.51%,相较于木质纤维素单独热解生物炭提高23.5%。木质纤维素与微藻共热解过程存在显著的协同效应,协同效应能够增大生物炭的产率,且显著促进C元素和N元素在生物炭中富集。热解温度的升高会促进生物炭中吡啶-N向季-N转化。微藻质量混合比的增加会增大生物炭的无序化程度和芳香化程度,微藻产生的含氮挥发分会与木质纤维素上的含氧官能团发生显著的美拉德反应,并进一步发生环化反应和缩聚反应生成富氮生物炭。

Abstract

In this study, the effects of pyrolysis temperature and lignocellulosic biomass/microalgae blending ratios on the yield, elemental composition, surface morphology, thermal stability, pore structure, surface functional group distribution and carbon skeleton structure of biochar derived from lignocellulosic biomass and microalgae co-pyrolysis were systematically investigated, and the synergistic effect and reaction mechanism during the co-pyrolysis process were further revealed. The results show that pyrolysis temperature and biomass/microalgae blending ratios had significant influence on the yield and physicochemical structure of co-pyrolysis biochar. The biochar yield decreases with rising pyrolysis temperature, and increases with higher microalgae blending ratios. The yield of co-pyrolysis biochar can reach as high as 41.51%, which is 23.5% higher than that of individual biomass biochar. The co-pyrolysis process of microalgae and lignocellulosic biomass exhibits a significant synergistic effect, which can enhance the yield of biochar and significantly promote the enrichment of C and N elements in biochar. The increase of pyrolysis temperature facilitates the conversion of pyridine-N to quaternary-N in biochar. With the increase of the microalgae blending ratios, the disorder degree and aromaticity of biochar is enhanced. The nitrogen-containing volatile produced from microalgae can react with the oxygen-containing functional groups on biomass through Maillard reaction, which further experience cyclization reactions and polycondensation reactions to form nitrogen-rich biochar.

关键词

木质纤维素 / 微藻 / 热解 / 生物炭 / 协同效应 / 结构演变

Key words

lignocellulose / microalgae / pyrolysis / biochar / synergistic effect / structural evolution

引用本文

导出引用
王岩, 朱贤青, 黄云, 许勉, 朱恂, 廖强. 木质纤维素类生物质与微藻共热解过程协同效应及生物炭结构演变规律研究[J]. 太阳能学报. 2025, 46(10): 1-12 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1109
Wang Yan, Zhu Xianqing, Huang Yun, Xu Mian, Zhu Xun, Liao Qiang. INVESTIGATION ON STRUCTURE EVOLUTION OF BIOCHAR AND SYNERGISTIC EFFECT DURING CO-PYROLYSIS PROCESS OF LIGNOCELLULOSIC BIOMASS AND MICROALGAE[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 1-12 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1109
中图分类号: TK6   

参考文献

[1] 陈志文, 崔晓敏, 程彬海, 等. 钙镍基单/双金属催化甲壳素热解特性研究[J]. 太阳能学报, 2024, 45(8): 628-634.
CHEN Z W, CUI X M, CHENG B H, et al.Study on chitin pyrolysis characteristics by calcium-nickel based mono/bimatallic catalysts[J]. Acta energiae solaris sinica, 2024, 45(8): 628-634.
[2] 王炯, 张品, 张舒晴, 等. 温度对秸秆生物炭理化特性和电化学特性的影响[J]. 太阳能学报, 2022, 43(5): 399-404.
WANG J, ZHANG P, ZHANG S Q, et al.Effect of temperature on physicochemical properties of straw biochar: focus on surface appearance and electrochemical properties[J]. Acta energiae solaris sinica, 2022, 43(5): 399-404.
[3] GIRODS P, DUFOUR A, FIERRO V, et al.Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities[J]. Journal of hazardous materials, 2009, 166(1): 491-501.
[4] SUBEDI R, TAUPE N, PELISSETTI S, et al.Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type[J]. Journal of environmental management, 2016, 166: 73-83.
[5] 赵丹丹, 赵伟, 单锐, 等. 新型纸浆污泥生物炭基催化剂的制备及其催化合成生物柴油研究[J]. 太阳能学报, 2023, 44(9): 432-439.
ZHAO D D, ZHAO W, SHAN R, et al.Study on preparation of modified waste paper pulp biochar-based catalyst and its catalytic application for biodiesel production[J]. Acta energiae solaris sinica, 2023, 44(9): 432-439.
[6] GAO W R, LIN Z X, CHEN H R, et al.A review on N-doped biochar for enhanced water treatment and emerging applications[J]. Fuel processing technology, 2022, 237: 107468.
[7] WANG C L, SUN L, ZHOU Y, et al.P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors[J]. Carbon, 2013, 59: 537-546.
[8] JEON I Y, NOH H J, BAEK J B.Nitrogen-doped carbon nanomaterials: synthesis, characteristics and applications[J]. Chemistry-an Asian journal, 2020, 15(15): 2282-2293.
[9] MATSAGAR B M, YANG R X, DUTTA S, et al.Recent progress in the development of biomass-derived nitrogen-doped porous carbon[J]. Journal of materials chemistry A, 2021, 9(7): 3703-3728.
[10] LYU Q, SI W Y, HE J J, et al.Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nature communications, 2018, 9: 3376.
[11] YADAV R, DIXIT C K.Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review[J]. Journal of science: advanced materials and devices, 2017, 2(2): 141-149.
[12] DOU Q Y, PARK H S.Perspective on high-energy carbon-based supercapacitors[J]. Energy & environmental materials, 2020, 3(3): 286-305.
[13] 郭莎莎. 茶树废弃枝条制备氮掺杂碳材料对重金属离子的吸附与检测[D]. 杨凌: 西北农林科技大学, 2020.
GUO S S.Preparation of camellia sinensis waste branch-derived N-doped carbon materials and its applications on heavy metal adsorption and detection[D]. Yangling: Northwest A & F University, 2020.
[14] LI Y C, LI Z H, XING B, et al.Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping[J]. Journal of analytical and applied pyrolysis, 2021, 155: 105072.
[15] ZHAO B, O’CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of cleaner production, 2018, 174: 977-987.
[16] CHEN W, CHEN Y Q, YANG H P, et al.Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect[J]. Bioresource technology, 2017, 245: 860-868.
[17] CHEN H P, XIE Y P, CHEN W, et al.Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy conversion and management, 2019, 196: 320-329.
[18] HUANG H J, YANG T, LAI F Y, et al.Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar[J]. Journal of analytical and applied pyrolysis, 2017, 125: 61-68.
[19] FAKAYODE O A, ABOAGARIB E A A, ZHOU C S, et al. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar: a review[J]. Bioresource technology, 2020, 297: 122408.
[20] WANG S, CAO B, FENG Y Q, et al.Co-pyrolysis and catalytic co-pyrolysis of Enteromorpha clathrata and rice husk[J]. Journal of thermal analysis and calorimetry, 2019, 135(4): 2613-2623.
[21] MA Z Q, CHEN D Y, GU J, et al.Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy conversion and management, 2015, 89: 251-259.
[22] ROSS A B, JONES J M, KUBACKI M L, et al.Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresource technology, 2008, 99(14): 6494-6504.
[23] VIEGAS C, NOBRE C, CORREIA R, et al.Optimization of biochar production by co-torrefaction of microalgae and lignocellulosic biomass using response surface methodology[J]. Energies, 2021, 14(21): 7330.
[24] SUO F Y, YOU X W, YIN S J, et al.Preparation and characterization of biochar derived from co-pyrolysis of Enteromorpha prolifera and corn straw and its potential as a soil amendment[J]. Science of the total environment, 2021, 798: 149167.
[25] ZHAO Y J, FENG D D, ZHANG Y, et al.Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar[J]. Fuel processing technology, 2016, 141: 54-60.
[26] 黄婷, 张山, 苏明雪, 等. 污泥基生物炭结构的共焦显微拉曼技术应用[J]. 中国环境科学, 2022, 42(7): 3378-3384.
HUANG T, ZHANG S, SU M X, et al.Application of confocal Raman microscopy on the structure of sludge-based biochar[J]. China environmental science, 2022, 42(7): 3378-3384.
[27] CHENG Y Z, WANG B Y, SHEN J M, et al.Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π-π electron donor-acceptor interaction[J]. Journal of hazardous materials, 2022, 432: 128757.
[28] PARDO G S, SARMAH A K, ORENSE R P.Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand[J]. Géotechnique, 2019, 69(6): 471-480.
[29] LI S M, CHEN G.Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures[J]. Waste management, 2018, 78: 198-207.
[30] KLOSS S, ZEHETNER F, DELLANTONIO A, et al.Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of environmental quality, 2012, 41(4): 990-1000.

基金

国家自然科学基金创新研究群体项目(52021004); 国家自然科学基金重点项目(52236009); 重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX1025)

PDF(4661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/