海上风电机组关键温度测点虚拟感知及应用方法

程逸, 张杨宇, 胡阳, 胡耀宗, 刘冰冰, 刘吉臻

太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 735-745.

PDF(6093 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6093 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (10) : 735-745. DOI: 10.19912/j.0254-0096.tynxb.2024-1115

海上风电机组关键温度测点虚拟感知及应用方法

  • 程逸1, 张杨宇1, 胡阳1, 胡耀宗1, 刘冰冰2, 刘吉臻1
作者信息 +

VIRTUAL PERCEPTION AND APPLICATION METHOD FOR KEY TEMPERATURE MEASUREMENT POINTS OF OFFSHORE WIND TURBINES

  • Cheng Yi1, Zhang Yangyu1, Hu Yang1, Hu Yaozong1, Liu Bingbing2, Liu Jizhen1
Author information +
文章历史 +

摘要

针对东南沿海高温高湿环境下海上风电机组易发生超温故障的运行难题,提出一种有限差分域-深度神经网络(FDD-DNN)的关键温度测点虚拟感知及应用方法。首先,提出机理分析与孤立森林算法融合的高维异常运行数据识别方法、高维相似工况联合的缺失数据填补方法;然后,定义可表征机组运行工况和时滞特性的有限差分回归向量,引入软间隔支持向量机(SSVM)划分差分动态运行域;在此基础上提出基于深度神经网络(DNN)的分域时序动态建模方法,完成全工况运行特性下的关键温度测点精细化表征及虚拟感知。最后,提出虚拟感知模型部署及应用的工程方法。以海上风电机组的主轴温度为例,结果表明:所提出的方法各项评价指标均有提升。

Abstract

To address the operational challenge of offshore wind turbines in the high-temperature and high-humidity environment of the southeastern coast, which are prone to overheating faults, a key temperature measurement point virtual perception and application method based on finite difference domain-deep neural networks (FDD-DNN) is proposed. Firstly, a high-dimensional abnormal operational data identification method integrating mechanism analysis and Isolation Forest algorithm, as well as a high-dimensional similar condition-based missing data imputation method, is proposed. Then, a finite difference regression vector that can characterize the operational conditions and time-delay characteristics of the wind turbine is defined, and a soft margin support vector machine (SSVM) is introduced to partition the differential dynamic operational domain. On this basis, a domain-based temporal dynamic modeling method based on DNN is proposed to achieve refined characterization and virtual perception of key temperature measurement points under full operational conditions. Finally, an engineering method for the deployment and application of the virtual perception model is proposed. Taking the main shaft temperature of offshore wind turbines as an example, the results show that the proposed method improves all evaluation metrics.

关键词

海上风电机组 / 温度测点 / 深度神经网络 / 有限差分域 / 虚拟感知 / 模型部署

Key words

offshore wind turbines / temperature measurement point / deep neural networks / finite difference domain / virtual perception / model deployment

引用本文

导出引用
程逸, 张杨宇, 胡阳, 胡耀宗, 刘冰冰, 刘吉臻. 海上风电机组关键温度测点虚拟感知及应用方法[J]. 太阳能学报. 2025, 46(10): 735-745 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1115
Cheng Yi, Zhang Yangyu, Hu Yang, Hu Yaozong, Liu Bingbing, Liu Jizhen. VIRTUAL PERCEPTION AND APPLICATION METHOD FOR KEY TEMPERATURE MEASUREMENT POINTS OF OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 735-745 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1115
中图分类号: TM614   

参考文献

[1] 郝晓燕, 翟羽佳, 臧麟山. 我国风能产业发展政策组合驱动路径研究: 基于清晰集定性比较分析方法[J]. 前沿, 2022(4): 42-49.
HAO X Y, ZHAI Y J, ZANG L S.Research on the driving factors of Chinese wind energy industry development policy mix: based on the crisp-set qualitative comparative analysis method[J]. Forward position, 2022(4): 42-49.
[2] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Y B, ZHAO Y, ZHAO L, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[3] 徐纪忠, 潘国兵, 陈坚, 等. 海上风电场自耗能现状及海上风电发展趋势分析[J]. 太阳能, 2022(9): 28-35.
XU J Z, PAN G B, CHEN J, et al.Self-energy consumption status of offshore wind farms and development trend analysis of offshore wind power[J]. Solar energy, 2022(9): 28-35.
[4] 顾云娟, 周红芳, 方颖, 等. 海上风电全产业链发展对策研究: 基于国内外经验分析[J]. 生态经济, 2022, 38(9): 80-86.
GU Y J, ZHOU H F, FANG Y, et al.Research on the development countermeasures of the whole industry chain of offshore wind power based on domestic and foreign experience analysis[J]. Ecological economy, 2022, 38(9): 80-86.
[5] 刘昌杰, 段斌, 张潇丹. 基于BPNN-NCT的风电机组主轴承异常辨识方法[J]. 电力系统保护与控制, 2022, 50(14): 114-122.
LIU C J, DUAN B, ZHANG X D.An abnormal identification method for the main bearing of wind turbines based on BPNN-NCT[J]. Power system protection and control, 2022, 50(14): 114-122.
[6] ZHANG S H, ZHANG T, LIU Y J.Early warning model of wind turbine front bearing based on Conv1D and LSTM[C]//2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Singapore, Singapore, 2021: 1029-1034.
[7] MANSOURI M, DHIBI K, HAJJI M, et al.Interval-valued reduced RNN for fault detection and diagnosis for wind energy conversion systems[C]//IEEE Sensors Journal. 2022: 13581-13588.
[8] 周致富, 罗浩然, 牟令. 基于BP神经网络及Pearson相关系数的风机发电机轴承温升故障诊断研究[J]. 中小企业管理与科技, 2021(1): 190-192.
ZHOU Z F, LUO H R, MOU L.Research on the fault diagnosis of temperature rise of fan and generator bearing based on BP neural network and Pearson correlation coefficient[J]. Management & technology of SME, 2021(1): 190-192.
[9] WANG Z, CHU X N.Operating condition identification of complete wind turbine using DBN and improved DDPG-SOM[C]//2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). Chengdu, China, 2022: 94-101.
[10] 赵娟娟, 刘广臣, 王瑞桃, 等. 基于LightGBM的风电机组齿轮箱油温故障预警研究[J]. 电力大数据, 2021, 24(11): 76-84.
ZHAO J J, LIU G C, WANG R T, et al.Research on fault warning of wind turbine gearbox based on LightGBM algorithm model[J]. Power systems and big data, 2021, 24(11): 76-84.
[11] 刘华新. 基于数据驱动的风电机组状态识别与维修决策研究[D]. 北京: 华北电力大学, 2020.
LIU H X.Research on condition recognition and maintenance decision of wind turbine based on data driven[D]. Beijing: North China Electric Power University, 2020.
[12] 刘杰, 蒋树旗. 基于LSTNet网络的风电机组发电机主轴承温度预测研究[J]. 传感技术学报, 2022, 35(7): 945-951.
LIU J, JIANG S Q.Temperature prediction of main bearing of wind turbine generator based on LSTNet[J]. Chinese journal of sensors and actuators, 2022, 35(7): 945-951.
[13] 尹诗, 侯国莲, 迟岩, 等. 风电机组发电机前轴承健康度预测方法及实现[J]. 系统仿真学报, 2021, 33(6): 1323-1333.
YIN S, HOU G L, CHI Y, et al.Prediction method for health degree of front bearing of wind turbine generator and implementation[J]. Journal of system simulation, 2021, 33(6): 1323-1333.
[14] 汪势杰, 王健, 代家昆, 等. 基于MIC-LSTM的风电机组温度信号融合与预测方法[J]. 红水河, 2022, 41(3): 51-56, 133.
WANG S J, WANG J, DAI J K, et al.Temperature signal fusion and prediction method of wind turbine based on MIC-LSTM[J]. Hongshui river, 2022, 41(3): 51-56, 133.
[15] 尹诗, 侯国莲, 于晓东, 等. 基于Bi-RNN的风电机组主轴承温度预警方法研究[J]. 郑州大学学报(工学版), 2019, 40(5): 45-51.
YIN S, HOU G L, YU X D, et al.Research on temperature prediction method for main bearing of wind turbine based on Bi-RNN[J]. Journal of Zhengzhou University (engineering science), 2019, 40(5): 45-51.
[16] 王洪斌, 王红, 何群, 等. 基于深度信念网络的风机主轴承状态监测方法[J]. 中国机械工程, 2018, 29(8): 948-953.
WANG H B, WANG H, HE Q, et al.Condition monitoring method for wind turbine main bearings based on DBN[J]. China mechanical engineering, 2018, 29(8): 948-953.
[17] 赵洪山, 刘辉海. 基于性能改善深度置信网络的风电机组主轴承状态分析[J]. 电力自动化设备, 2018, 38(2): 44-49.
ZHAO H S, LIU H H.Condition analysis of wind turbine main bearing based on deep belief network with improved performance[J]. Electric power automation equipment, 2018, 38(2): 44-49.
[18] 尹诗, 侯国莲, 胡晓东, 等. 基于AC-GAN数据重构的风电机组主轴承温度监测方法[J]. 智能系统学报, 2021, 16(6): 1106-1116.
YIN S, HOU G L, HU X D, et al.Temperature monitoring method of the main bearing of wind turbine based on AC-GAN data reconstruction[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1106-1116.
[19] 叶家豪, 魏霞, 黄德启, 等. 基于灰色关联分析的BSO-ELM-AdaBoost风电功率短期预测[J]. 太阳能学报, 2022, 43(3): 426-432.
YE J H, WEI X, HUANG D Q, et al.Short-term forecast of wind power based on BSO-ELM-AdaBoost with grey correlation analysis[J]. Acta energiae solaris sinica, 2022, 43(3): 426-432.
[20] 奚芸华. 风电异常运行数据识别及其应用研究[D]. 北京: 华北电力大学, 2020.
XI Y H.Research on identification of wind power abnormal operation data and its application[D]. Beijing: North China Electric Power University, 2020.
[21] 何伟挺, 米俊芃, 侯耀春, 等. 基于孤立森林-控制图与多特征联合的滚动轴承异常状态检测[J]. 轴承, 2023(5): 90-98.
HE W T, MI J P, HOU Y C, et al.Abnormal condition detection of rolling bearings based on isolated forest-control chart and multi feature joint[J]. Bearing, 2023(5): 90-98.
[22] 候文昌. 风电机组机械侧运行动态建模研究[D]. 北京: 华北电力大学, 2021.
HOU W C.Research on dynamic modeling of mechanical operation of wind turbine[D]. Beijing: North China Electric Power University, 2021.
[23] 胡阳, 李倩, 房方, 等. 基于有限差分运行域的风电场全风况超短期出力动态区间建模[J]. 电网技术, 2022, 46(4): 1346-1357.
HU Y, LI Q, FANG F, et al.Dynamic interval modeling of ultra-short-term output of wind farm based on finite difference operating domains[J]. Power system technology, 2022, 46(4): 1346-1357.
[24] 雷萌, 郭鹏, 刘博嵩. 基于自适应DBSCAN算法的风电机组异常数据识别研究[J]. 动力工程学报, 2021, 41(10): 859-865.
LEI M, GUO P, LIU B S.Study on abnormal data recognition of wind turbines based on adaptive DBSCAN algorithm[J]. Journal of Chinese Society of Power Engineering, 2021, 41(10): 859-865.
[25] 胡阳, 王蔚然, 房方, 等. 风电机组运行动态数字孪生建模及半物理仿真[J]. 系统仿真学报, 2024, 36(3): 636-648.
HU Y, WANG W R, FANG F, et al.Dynamic digital twin modelling and semi-physical simulation of wind turbine operation[J]. Journal of system simulation, 2024, 36(3): 636-648.
[26] 阳雨妍, 宋爱国, 沈书馨, 等. 基于CNN-GRU的遥操作机器人操作者识别与自适应速度控制方法[J]. 仪器仪表学报, 2021, 42(3): 123-131.
YANG Y Y, SONG A G, SHEN S X, et al.Operator recognition and adaptive speed control method of teleoperation robot based on CNN-GRU[J]. Chinese journal of scientific instrument, 2021, 42(3): 123-131.
[27] 孙毅, 刘蕊, 魏孟迪, 等. 基于ResNet-GRU模型的短期光伏出力预测估计方法[J]. 供用电, 2023, 40(6): 34-41.
SUN Y, LIU R, WEI M D, et al.Short-term photovoltaic power prediction estimation method based on ResNet-GRU model[J]. Distribution & utilization, 2023, 40(6): 34-41.

基金

国家海上风力发电工程技术研究中心开放基金(No.HSFD22002)

PDF(6093 KB)

Accesses

Citation

Detail

段落导航
相关文章

/