考虑用户随机出行行为的大规模电动汽车集群调度策略

骆徐, 程静

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 419-430.

PDF(3876 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3876 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 419-430. DOI: 10.19912/j.0254-0096.tynxb.2024-1130

考虑用户随机出行行为的大规模电动汽车集群调度策略

  • 骆徐1, 程静1,2
作者信息 +

LARGE-SCALE ELECTRIC VEHICLE CLUSTER SCHEDULING STRATEGY CONSIDERING USERS’STOCHASTIC TRAVEL BEHAVIOR

  • Luo Xu1, Cheng Jing1,2
Author information +
文章历史 +

摘要

针对大规模电动汽车难以调控和新能源并网即时消纳率低的问题,提出一种考虑用户随机出行行为的电动汽车集群与电网交互的调度策略。首先,基于路网拓扑和NHTS2017数据库构建用户出行场景,以蒙特卡洛方法模拟用户随机出行行为;其次,引入电动汽车集群运营商概念,实时计算提取用户车辆特征和时空特征,以闵可夫斯基和理念创建电动汽车集群的调度物理模型;最后,以运行成本最低为目标,建立考虑用户随机出行行为和充电需求的分布式电网综合调度模型,求解各主体出力最优分配方案。以江苏某分布式电网为算例,仿真分析表明,所提调度策略降低了用户充电费用,提升了用户随机出行满意度和新能源消纳水平,减少了火电机组运行成本,实现了电动汽车用户与电网的友好互动。

Abstract

Aiming at the problems of difficult regulation of large-scale electric vehicles and low real-time consumption rate of renewable energy, a scheduling strategy for electric vehicle cluster-grid interaction considering users’stochastic travel behavior is proposed. First, the user travel scenario is constructed based on the road network topology the NHTS2017 database, and the user random travel behavior is simulated by Monte Carlo method. Second,the concept of electric vehicle cluster operator is introduced, the user vehicle characteristics and spatio-temporal characteristics are extracted by real-time computation, and the dispatchable physical model of electric vehicle cluster is created based on the Minkowski-sumcon cept. Finally, with the goal of minimizing operation costs, the integrated dispatch model of a distributed grid considering users’stochastic travel behavior is established to solve the optimal allocation scheme of each subject’s output. Taking a distributed grid in Jiangsu as an example, the results show that the proposed scheduling strategy reduces users’charging cost, improves users’random travel satisfaction and new energy consumption level, reduces the operating cost of thermal power units and realizes the friendly interaction between users and the grid.

关键词

电动汽车 / 随机出行行为模型 / 综合调度 / 闵可夫斯基和 / 可调度物理模型

Key words

electric vehicle / stochastic travel behavior models / integrated dispatch / Minkowski-sumcon / dispatchable physical model

引用本文

导出引用
骆徐, 程静. 考虑用户随机出行行为的大规模电动汽车集群调度策略[J]. 太阳能学报. 2025, 46(11): 419-430 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1130
Luo Xu, Cheng Jing. LARGE-SCALE ELECTRIC VEHICLE CLUSTER SCHEDULING STRATEGY CONSIDERING USERS’STOCHASTIC TRAVEL BEHAVIOR[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 419-430 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1130
中图分类号: TM73   

参考文献

[1] 李英量, 高兆迪, 王康, 等. 基于清洁发展机制的不确定性机组组合优化方法[J]. 太阳能学报, 2023, 44(3): 368-375.
LI Y L, GAO Z D, WANG K, et al.Uncertainty unit commitment optimization method based on clean development mechanism[J]. Acta energiae solaris sinica, 2023, 44(3): 368-375.
[2] SHI Y W, FENG D H, YU S M, et al.The projection of electric vehicle population growth considering scrappage and technology competition: a case study in Shanghai[J]. Journal of cleaner production, 2022, 365: 132673.
[3] 新华社. 我国新能源汽车保有量超过2000万辆[EB/OL]. https://www.gov.cn/zhengce/jiedu/tujie/202401/content_6925459.htm, 2024-1-11/2024-07-30.
[4] 章攀钊, 谢丽蓉, 马瑞真, 等. 考虑电动汽车集群可调度能力的多主体两阶段低碳优化运行策略[J]. 电网技术, 2022, 46(12): 4809-4825.
ZHANG P Z, XIE L R, MA R Z, et al.Multi-player two-stage low carbon optimal operation strategy considering electric vehicle cluster schedulability[J]. Power system technology, 2022, 46(12): 4809-4825.
[5] ABBASI M H, TAKI M, RAJABI A, et al.Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: a multi-stage risk constrained approach[J]. Applied energy, 2019, 239: 1294-1307.
[6] CHAUDHARI K, KANDASAMY N K, KRISHNAN A, et al.Agent-based aggregated behavior modeling for electric vehicle charging load[J]. IEEE transactions on industrial informatics, 2019, 15(2): 856-868.
[7] 胡宝雨, 刘学. 基于手机信令数据的城市区域居民出行OD预测模型[J]. 交通运输系统工程与信息, 2023, 23(6): 296-306.
HU B Y, LIU X.Prediction model for residents travelling OD in urban areas based on mobile phone signaling data[J]. Journal of transportation systems engineering and information technology, 2023, 23(6): 296-306.
[8] LIN H Y, FU K, WANG Y, et al.Characteristics of electric vehicle charging demand at multiple types of location-application of an agent-based trip chain model[J]. Energy, 2019, 188: 116122.
[9] 李宏伟, 宋玉峰, 李帅兵, 等. 基于ArcGIS路网结构与交通拥挤度分析的电动汽车充电负荷预测方法[J]. 电网技术, 2025, 49(5): 1920-1930.
LI H W, SONG Y F, LI S B, et al.Electric vehicle charging load prediction based on ArcGIS road network structure and traffic congestion analysis[J]. Power system technology, 2025, 49(5): 1920-1930.
[10] 程杉, 钟仕凌, 尚冬冬, 等. 考虑电动汽车时空负荷分布特性的主动配电网动态重构[J]. 电力系统保护与控制, 2022, 50(17): 1-13.
CHENG S, ZHONG S L, SHANG D D, et al.Dynamic reconfiguration of an active distribution network considering temporal and spatial load distribution characteristics of electric vehicles[J]. Power system protection and control, 2022, 50(17): 1-13.
[11] 姜涛, 吴成昊, 李雪, 等. 考虑电动汽车充放电的输配协同能量-灵活性市场出清机制[J]. 电力系统自动化, 2024, 48(7): 210-224.
JIANG T, WU C H, LI X, et al.Clearing mechanism of energy and flexibility markets with transmission and distribution coordination considering charging and discharging of electric vehicles[J]. Automation of electric power systems, 2024, 48(7): 210-224.
[12] LU X, CHAN K W, XIA S W, et al.An operation model for distribution companies using the flexibility of electric vehicle aggregators[J]. IEEE transactions on smart grid, 2021, 12(2): 1507-1518.
[13] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报, 2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[14] 颜湘武, 王庆澳, 卢俊达, 等. 计及电动汽车和柔性负荷的微电网能量调度[J]. 电力系统保护与控制, 2023, 51(17): 69-79.
YAN X W, WANG Q A, LU J D, et al.Microgrid energy scheduling with electric vehicles and flexible loads[J]. Power system protection and control, 2023, 51(17): 69-79.
[15] 侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46(15): 46-55.
HOU H, TANG J Y, WANG Y F, et al.Long-time-scale charging and discharging scheduling of electric vehicles under joint price and incentive demand response[J]. Automation of electric power systems, 2022, 46(15): 46-55.
[16] 董海鹰, 贠韫韵, 汪宁渤, 等. 基于双重电价的电动汽车充放电两阶段优化调度策略[J]. 太阳能学报, 2021, 42(4): 115-124.
DONG H Y, YUN Y Y, WANG N B, et al.Two-stage dispatch optimization strategy for charging and discharging of electric vehicles based on double electricity price[J]. Acta energiae solaris sinica, 2021, 42(4): 115-124.
[17] 康慨, 施念, 王艳鹏, 等. 基于区块链技术的去中心化电动汽车V2G新模式[J]. 电力自动化设备, 2021, 41(12): 78-86, 78-86, 114.
KANG K, SHI N, WANG Y P, et al. New decentralized V2G mode of electric vehicles based on blockchain technology[J]. Electric power automation equipment, 2021, 41(12): 78-86, 78-86, 114.
[18] 刘东奇, 张曦, 钱奕衡. 电动汽车集群充放电演化博弈协同策略[J]. 电力系统保护与控制, 2023, 51(16): 84-93.
LIU D Q, ZHANG X, QIAN Y H.Evolutionary game coordination strategy of electric vehicle cluster charging and discharging[J]. Power system protection and control, 2023, 51(16): 84-93.
[19] 李士动, 施泉生, 赵文会, 等. 计及电动汽车接入电网的备用服务多目标竞价优化[J]. 电力系统自动化, 2016, 40(2): 77-83.
LI S D, SHI Q S, ZHAO W H, et al.A multi-objective optimization based bidding model with vehicle-to-grid reserve provision considered[J]. Automation of electric power systems, 2016, 40(2): 77-83.
[20] 张琳娟, 许长清, 王利利, 等. 基于OD矩阵的电动汽车充电负荷时空分布预测[J]. 电力系统保护与控制, 2021, 49(20): 82-91.
ZHANG L J, XU C Q, WANG L L, et al.OD matrix based spatiotemporal distribution of EV charging load prediction[J]. Power system protection and control, 2021, 49(20): 82-91.
[21] 葛晓琳, 曹士鹏, 符杨, 等. 基于区域解耦的时空双尺度电动汽车优化调度[J]. 中国电机工程学报, 2023, 43(19): 7383-7396.
GE X L, CAO S P, FU Y, et al.Optimal scheduling of space-time dual-scale electric vehicles based on regional decoupling[J]. Proceedings of the CSEE, 2023, 43(19): 7383-7396.

基金

新疆维吾尔自治区重大专项项目(2022A01001-4); 国家重点研发项目(2021YFB1506902)

PDF(3876 KB)

Accesses

Citation

Detail

段落导航
相关文章

/