驳船式风-浪集成能源系统动力学响应特性研究

张险峰, 马璐, 丁洁依, 秦明, 雷肖, 杨阳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 614-622.

PDF(4276 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4276 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 614-622. DOI: 10.19912/j.0254-0096.tynxb.2024-114

驳船式风-浪集成能源系统动力学响应特性研究

  • 张险峰1, 马璐1, 丁洁依2, 秦明1, 雷肖1, 杨阳2
作者信息 +

STUDY OF DYNAMIC BEHAVIOR OF BARGE-TYPE WIND-WAVE INTEGRATED FLOATING ENERGY SYSTEM

  • Zhang Xianfeng1, Ma Lu1, Ding Jieyi2, Qin Ming1, Lei Xiao1, Yang Yang2
Author information +
文章历史 +

摘要

为研究驳船式风-浪集成能源系统在不同风浪联合作用时的动态响应,以NREL 5 MW风力机、ITI Energy Barge平台及数个摆式波能装置组成的集成能源系统(IFES)为研究对象,并基于开源软件OpenFAST和水动力分析软件AQWA构建气动-水动-伺服-弹性一体化仿真模型(CATIFES),以期通过CATIFES计算常规运行工况时集成系统的平台运动响应及输出功率,定性并定量分析波能装置安装对集成系统运动特性及发电性能的影响。结果表明:所有运行工况下,集成系统的平台横摇及纵摇响应均显著小于单个驳船式平台。其中,当风速为12 m/s时,横摇及纵摇分别降低67.45%与47.02%。此外,集成系统整体发电功率在安装波能装置后有所提升,额定风速时可达到1.89%。且波能装置的安装对塔基弯矩及系泊张力未产生不利影响。为此,波能装置的合理安装可在平衡水动力载荷,提升集成系统运动稳定性的同时,增加整体输出功率,从而提高海洋能源利用效率。

Abstract

In order to investigate the dynamic responses of the IFES model under different wind-wave combined loads, the NREL 5 MW wind turbine, the ITI Energy barge-type platform and several Wavestar prototype WECs are employed for the case study. A coupled analysis tool is developed to examine the aero-hydro-servo-elastic coupled dynamic behavior of the hybrid system under wind and wave loadings. The platform motions and power characteristics of the IFES model are obtained and compared to that of the FOWT. The results indicated that the time-varying platform motions of the examined IFES models are significantly mitigated by the integration of WECs under all examined conditions. The platform roll and pitch is respectively decreased by 67.45% and 47.02% at wind speed of 12 m/s. Additionally, the output power of the IFES model is also increased by 1.89% under the rated wind speed of the wind turbine. The tower-base bending moment in rolling and pitching are also not negatively influenced to increase as well as fairlead tension of each mooring line. The obtained results have confirmed that the combination of WECs is not just beneficial in improving platform motion stability of the hybrid system, but also positively enhancing the renewable energy utilization efficiency.

关键词

海上风力机 / 海上风电 / 波浪能 / 集成系统 / 动力学响应 / 全耦合效应

Key words

offshore wind turbines / offshore wind energy / wave energy / integrated system / dynamic response / coupling effect

引用本文

导出引用
张险峰, 马璐, 丁洁依, 秦明, 雷肖, 杨阳. 驳船式风-浪集成能源系统动力学响应特性研究[J]. 太阳能学报. 2025, 46(11): 614-622 https://doi.org/10.19912/j.0254-0096.tynxb.2024-114
Zhang Xianfeng, Ma Lu, Ding Jieyi, Qin Ming, Lei Xiao, Yang Yang. STUDY OF DYNAMIC BEHAVIOR OF BARGE-TYPE WIND-WAVE INTEGRATED FLOATING ENERGY SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 614-622 https://doi.org/10.19912/j.0254-0096.tynxb.2024-114
中图分类号: TK83   

参考文献

[1] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[2] 姜波, 丁杰, 方舣洲, 等. 涠洲岛海洋风能和波浪能资源评估[J]. 太阳能学报, 2023, 44(10): 461-466.
JIANG B, DING J, FANG Y Z, et al.Offshore wind energy and wave energy resource valuation in Weizhou island[J]. Acta energiae solaris sinica, 2023, 44(10): 461-466.
[3] 任年鑫, 朱莹, 马哲, 等. 新型浮式风能-波浪能集成结构系统耦合动力分析[J]. 太阳能学报, 2020, 41(5): 159-165.
REN N X, ZHU Y, MA Z, et al.Coupled dynamic analysis of a novel floating wind energy and wave energy combination system[J]. Acta energiae solaris sinica, 2020, 41(5): 159-165.
[4] KONISPOLIATIS D N, MANOLAS D I, VOUTSINAS S G, et al.Coupled dynamic response of an offshore multi-purpose floating structure suitable for wind and wave energy exploitation[J]. Frontiers in energy research, 2022, 10: 920151.
[5] 赵永发, 柯世堂, 员亦雯, 等. 新型风浪联合发电浮式平台浮筒-立柱-浮子多尺度流场演化与荷载特性[J]. 太阳能学报, 2023, 44(7): 370-379.
ZHAO Y F, KE S T, YUN Y W, et al.Multi-scale flow field interference and load characteristics of new type of wind-wave combined power generation floating platform buoy-column-floater[J]. Acta energiae solaris sinica, 2023, 44(7): 370-379.
[6] HALLAK T S, KARMAKAR D, SOARES C G.Hydrodynamic performance of semi-submersible FOWT combined with point-absorber WECs[M]. Maritime technology and engineering 5 Volume 2. CRC Press, 2021: 577-585
[7] 吴鸿博, 周道成, 任年鑫, 等. 基于张力腿平台风能-波浪能集成结构系统动力分析[J]. 太阳能学报, 2021, 42(8): 343-348.
WU H B, ZHOU D C, REN N X, et al.Coupled dynamic analysis of a combined wind-wave energy system based on a tension leg platform[J]. Acta energiae solaris sinica, 2021, 42(8): 343-348.
[8] WANG Y P, SHI W, MICHAILIDES C, et al.WEC shape effect on the motion response and power performance of a combined wind-wave energy converter[J]. Ocean engineering, 2022, 250: 111038.
[9] LI Y M, ONG M C, WANG K, et al.Power performance and dynamic responses of an integrated system with a semi-submersible wind turbine and four torus-shaped wave energy converters[J]. Ocean engineering, 2022, 259: 111810.
[10] HOMAYOUN E, PANAHI S, GHASSEMI H, et al.Power absorption of combined wind turbine and wave energy converter mounted on braceless floating platform[J]. Ocean engineering, 2022, 266: 113027.
[11] YANG Y, SHI Z B, FU J B, et al.Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system[J]. Energy, 2023, 285: 128789.
[12] YANG Y, FU J B, SHI Z B, et al.Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects[J]. Renewable energy, 2023, 216: 119111.
[13] YANG Y, BASHIR M, WANG J, et al.Performance evaluation of an integrated floating energy system based on coupled analysis[J]. Energy conversion and management, 2020, 223: 113308.
[14] YANG Y, BASHIR M, MICHAILIDES C, et al.Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures[J]. Renewable energy, 2021, 176: 89-105.
[15] YANG Y, BASHIR M, MICHAILIDES C, et al.Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable energy, 2020, 161: 606-625.

基金

国家重点研发计划(2021YFB1507100); 国家自然科学基金(52101317); 中国长江三峡集团有限公司科研项目(202303059); 高等学校学科创新引智计划(111计划)“跨海大桥安全保障与智能运行学科创新引智基地(D21013)”资助

PDF(4276 KB)

Accesses

Citation

Detail

段落导航
相关文章

/