基于多元储能的综合能源系统多时间尺度优化运行研究

郭云峰, 钱江波, 刘奥, 吴迪

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 461-469.

PDF(2236 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2236 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 461-469. DOI: 10.19912/j.0254-0096.tynxb.2024-1163

基于多元储能的综合能源系统多时间尺度优化运行研究

  • 郭云峰1, 钱江波1,2, 刘奥1, 吴迪1,2
作者信息 +

RESEARCH ON MULTI-TIME SCALE OPTIMIZATION OF INTEGRATED ENERGY SYSTEM BASED ON MULTIPLE ENERGY STORAGE

  • Guo Yunfeng1, Qian Jiangbo1,2, Liu Ao1, Wu Di1,2
Author information +
文章历史 +

摘要

为解决可再生能源消纳水平低和用户负荷波动所造成的源-荷供需不平衡的问题,以三阶段多时间尺度方法为研究环境,其中日前、日内、实时优化的时间尺度分别为1 h、15 min、1 min,逐级优化系统中各设备出力计划。实时在日内规划的各设备出力计划上,增加超级电容设备,完善系统中储电设备的种类。利用变分模态分解(VMD)分频技术将系统的差额功率分为高频和低频信号,对能量型和功率型两种储电设备重新进行调峰调频。结果表明,实时优化阶段增加超容后可节省90%的锂电池充放电成本,充放电次数由131次减少到13次,可降低整个系统的日运行成本。

Abstract

To tackle the challenge of source-load imbalance caused by the underutilization of renewable energy and the variability in user demand,this research introduces a multi-time scale optimization strategy for an integrated energy system featuring multiple energy storage units. The proposed strategy employs a systematic three-tier optimization framework,designated as “day-ahead—intra-day—real-time peak regulation and frequency modulation”. This framework meticulously refines the operational plans for all system components at different stages. Specifically,the day-ahead optimization operates on a 1-hour time scale, the intra-day optimization on a 15-minute interval,and the real-time adjustment on a 1-minute cycle. In real-time planning, supercapacitor(SC) equipment is incorporated into the output plan for each day-intra equipment schedule,employing variational mode decomposition(VMD) frequency division technology. The system’s differential power is divided into high-frequency and low-frequency components,and both the energy-type and power-type storage devices are reconfigured. Through this process,the study determines the optimal VMD frequency-dirition ration. The results show that the charge and discharge cost of the lithium-ion battery can be saved 90% by increasing the supercapacitor in the real-time optimization stage,and the charge and discharge times are reduced from 131 to 13 times.

关键词

储能 / 综合能源 / 超级电容 / 多时间尺度 / VMD分频

Key words

energy storage / integrated energy / supercapacitor / multi-time scale / VMD frequency division

引用本文

导出引用
郭云峰, 钱江波, 刘奥, 吴迪. 基于多元储能的综合能源系统多时间尺度优化运行研究[J]. 太阳能学报. 2025, 46(11): 461-469 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1163
Guo Yunfeng, Qian Jiangbo, Liu Ao, Wu Di. RESEARCH ON MULTI-TIME SCALE OPTIMIZATION OF INTEGRATED ENERGY SYSTEM BASED ON MULTIPLE ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 461-469 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1163
中图分类号: TK01   

参考文献

[1] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Y F, CHEN L J, ZHENG T W, et al.Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric power automation equipment, 2021, 41(9): 31-38.
[2] CHEN H Y, XUAN P Z, WANG Y C, et al.Key technologies for integration of multitype renewable energy sources: research on multi-timeframe robust scheduling/dispatch[J]. IEEE transactions on smart grid, 2016, 7(1): 471-480.
[3] 靳小龙, 穆云飞, 贾宏杰, 等. 集成智能楼宇的微网系统多时间尺度模型预测调度方法[J]. 电力系统自动化, 2019, 43(16): 25-33.
JIN X L, MU Y F, JIA H J, et al.Model predictive control based multiple-time-scheduling method for microgrid system with smart buildings integrated[J]. Automation of electric power systems, 2019, 43(16): 25-33.
[4] 王成山, 吕超贤, 李鹏, 等. 园区型综合能源系统多时间尺度模型预测优化调度[J]. 中国电机工程学报, 2019, 39(23): 6791-6803, 7093.
WANG C S, LYU C X, LI P, et al.Multiple time-scale optimal scheduling of community integrated energy system based on model predictive control[J]. Proceedings of the CSEE, 2019, 39(23): 6791-6803, 7093.
[5] YANG H Z, LI M L, JIANG Z Y, et al.Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response[J]. IEEE access, 2020, 8: 5080-5090.
[6] LIU H, ZHAO Y, GU C H, et al.Adjustable capability of the distributed energy system: Definition, framework, and evaluation model[J]. Energy, 2021, 222: 119674.
[7] 李杨, 孙斌, 吴峰, 等. 考虑动态频率约束的多能源电力系统日前-日内优化调度[J]. 太阳能学报, 2024, 45(2): 406-415.
LI Y, SUN B, WU F, et al.Day-ahead and intra-day optimal scheduling of multi-energy power systems considering dynamic frequency constraints[J]. Acta energiae solaris sinica, 2024, 45(2): 406-415.
[8] 何畅, 程杉, 徐建宇, 等. 基于多时间尺度和多源储能的综合能源系统能量协调优化调度[J]. 电力系统及其自动化学报, 2020, 32(2): 77-84, 97.
HE C, CHENG S, XU J Y, et al.Coordinated optimal scheduling of integrated energy system considering multi-time scale and hybrid energy storage system[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 77-84, 97.
[9] CHENG S, WANG R, XU J Y, et al.Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems[J]. Sustainable energy technologies and assessments, 2021, 47: 101327.
[10] LI X Z, WANG W Q, WANG H Y.Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand[J]. Applied energy, 2021, 285: 116458.
[11] SUN C, SU S, ZHOU Y F, et al.Multi-time scale coordinated optimal control method for ADN considering source load prediction error[C]//2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). Chongqing, China, 2021: 1385-1391.
[12] 王智, 陶鸿俊, 张玲. 冷热电联供系统多时间尺度滚动优化运行方法研究[J]. 动力工程学报, 2022, 42(3): 276-285.
WANG Z, TAO H J, ZHANG L.Research on multi-time scale rolling optimal operation method of combined cooling, heating and power system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(3): 276-285.
[13] 王智, 陶鸿俊, 蔡文奎, 等. 多时间尺度滚动优化在冷热电联供系统中的优化调度研究[J]. 太阳能学报, 2023, 44(2): 298-308.
WANG Z, TAO H J, CAI W K, et al.Optimal scheduling research of multi-time-scale rolling optimization in CCHP system[J]. Acta energiae solaris sinica, 2023, 44(2): 298-308.
[14] SHI Z D, WANG W S, HUANG Y H, et al.Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control[J]. CSEE journal of power and energy systems, 2022, 8(1): 95-104.
[15] 丁明, 吴杰, 张晶晶. 面向风电平抑的混合储能系统容量配置方法[J]. 太阳能学报, 2019, 40(3): 593-599.
DING M, WU J, ZHANG J J.Capacity optimization method of hybrid energy storage system for wind power smoothing[J]. Acta energiae solaris sinica, 2019, 40(3): 593-599.
[16] 刘长良, 闫萧. 基于工况辨识和变分模态分解的风电机组滚动轴承故障诊断[J]. 动力工程学报, 2017, 37(4): 273-278, 334.
LIU C L, YAN X.Fault diagnosis of a wind turbine rolling bearing based on variational mode decomposition and condition identification[J]. Journal of Chinese Society of Power Engineering, 2017, 37(4): 273-278, 334.

基金

国家重点研发计划(2022YFE0117200); 国家自然科学基金(52206247); 河北省自然科学基金(E2023502040); 中央高校基本科研业务费专项资金(2022MS089)

PDF(2236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/