基于自适应变参数卡尔曼滤波算法的混合储能控制策略

杨航宇, 刘广忱, 陈禹, 马丹, 田桂珍, 王顺利

太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 32-40.

PDF(3585 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3585 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (2) : 32-40. DOI: 10.19912/j.0254-0096.tynxb.2024-1166

基于自适应变参数卡尔曼滤波算法的混合储能控制策略

  • 杨航宇1~3, 刘广忱1~3, 陈禹4, 马丹4, 田桂珍1~3, 王顺利1,2
作者信息 +

HYBRID ENERGY STORAGE CONTROL STRATEGY BASED ON ADAPTIVE PARAMETER-VARYING KALMAN FILTERING ALGORITHLM

  • Yang Hangyu1~3, Liu Guangchen1~3, Chen Yu4, Ma Dan4, Tian Guizhen1~3, Wang Shunli1,2
Author information +
文章历史 +

摘要

提出一种基于自适应变参数卡尔曼滤波算法的飞轮-锂电池混合储能功率分配控制以对风电场出力做并网前平抑,将飞轮电机转速和锂电池荷电状态引入卡尔曼增益的数据融合过程,实时影响卡尔曼增益计算以解决由于滤波算法滞后导致的风电出力突变时功率分配不合理的问题。硬件在环实验验证所提控制策略下,飞轮-锂电池混合储能对风电厂产生功率的实时平抑效果,通过幅频分析验证混合储能平抑效果,构建滑动窗口检测固定时段内最大变化值。结果表明,所提控制策略控制下混合储能平抑后功率平滑,高频波动幅值降低80.3%,且符合国家风电厂并网标准。

Abstract

This paper proposes an improved power allocation control strategy for flywheel-lithium battery hybrid energy storage with adaptive variable parameter Kalman filtering, smoothing the output of wind farms before grid connection. The process involves integrating the flywheel motor speed and lithium battery state of charge (SOC) into the Kalman gain calculation, which is dynamically adjusted in real-time to address the issue of unreasonable power allocation when wind power output fluctuates due to the lag of filtering algorithms. Hardware-in-the-loop experiments validate the real-time smoothing effect of the proposed control strategy, which is applied to the power output of wind farms by flywheel-lithium battery hybrid energy storage. The smoothing effect of hybrid energy storage is verified through amplitude-frequency analysis, and a sliding window is utilized to detect the maximum change value within a fixed period. The results indicate that, beneath the proposed control strategy, the power smoothing effect of hybrid energy storage reduces the amplitude of high-frequency fluctuations by 80.30% and complies with the national wind farm grid connection standards.

关键词

风力发电 / 混合系统 / 飞轮 / 卡尔曼滤波 / 荷电状态

Key words

wind power / hybrid systems / flywheel / Kalman filter / state of charge

引用本文

导出引用
杨航宇, 刘广忱, 陈禹, 马丹, 田桂珍, 王顺利. 基于自适应变参数卡尔曼滤波算法的混合储能控制策略[J]. 太阳能学报. 2025, 46(2): 32-40 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1166
Yang Hangyu, Liu Guangchen, Chen Yu, Ma Dan, Tian Guizhen, Wang Shunli. HYBRID ENERGY STORAGE CONTROL STRATEGY BASED ON ADAPTIVE PARAMETER-VARYING KALMAN FILTERING ALGORITHLM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 32-40 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1166
中图分类号: TM73   

参考文献

[1] LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Chinese journal of engineering science, 2021, 23(1): 149.
[2] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45(21): 2-22.
CAI X, YANG R X, ZHOU J Q, et al.Review on offshore wind power integration via DC transmission[J]. Automation of electric power systems, 2021, 45(21): 2-22.
[3] 崔杨, 姜涛, 仲悟之, 等. 考虑风电消纳的区域综合能源系统源荷协调经济调度[J]. 电网技术, 2020, 44(7): 2474-2483.
CUI Y, JIANG T, ZHONG W Z, et al.Source-load coor-dination economic dispatch method for regional integrated energy system considering wind power accommodation[J]. Power system technology, 2020, 44(7): 2474-2483.
[4] LI Z C, HU P, MA J X, et al.Analysis and pro-spect of offshore wind power development in China[J]. China offshore oil and gas, 2022, 34(5): 229-236.
[5] 张建文, 刘国亮, 刘铭洋. 风电提供柔性爬坡容量的电力系统优化调度[J]. 太阳能学报, 2021, 42(8): 414-420.
ZHANG J W, LIU G L, LIU M Y.Optimal dispatch of power system with wind power providing flexible ramping capacity[J]. Acta energiae solaris sinica, 2021, 42(8): 414-420.
[6] 郭琛良, 张德虎, 许昌, 等. 配合风电消纳的综合储能系统经济容量优化研究[J]. 可再生能源, 2022, 40(5): 660-666.
GUO C L, ZHANG D H, XU C, et al.Study on economic capacity optimization of comprehensive energy storage system combined with wind power consumption[J]. Renewable energy resources, 2022, 40(5): 660-666.
[7] 程瑜, 陈熙. 基于源-荷-储互动的储能对风电消纳能力影响分析[J]. 电力系统自动化, 2022, 46(13): 84-93.
CHENG Y, CHEN X.Analysis on influence of energy storage on accommodation capability of wind power based on source-load-storage interaction[J]. Automation of electric power systems, 2022, 46(13): 84-93.
[8] 田桂珍, 卢栋, 刘广忱, 等. 基于零相位低通滤波器的混合储能平抑直驱风电机组功率波动控制策略的研究[J]. 太阳能学报, 2021, 42(6): 72-78.
TIAN G Z, LU D, LIU G C, et al.Research on control strategy of suppressing power fluctuation of direct-drive wind power system with hybrid energy storage based on zero-phase low-pass filter[J]. Acta energiae solaris sinica, 2021, 42(6): 72-78.
[9] 王嘉乐, 郭苏, 何意, 等. 基于灵活储氢和蓄电池联合储能的混合可再生能源系统规划运行协同优化[J]. 太阳能学报, 2024, 45(7): 41-49.
WANG J L, GUO S, HE Y, et al.Multi stage planning and operation optimization of hybrid renewable energy systems with flexible hydrogen-battery stroage[J]. Acta energiae solaris sinica, 2024, 45(7): 41-49.
[10] 洪烽, 贾欣怡, 梁璐, 等. 面向风电场频率支撑的混合储能层次化容量优化配置[J]. 中国电机工程学报, 2024, 44(14): 5596-5607.
HONG F, JIA X Y, LIANG L, et al.Hierarchical capacity optimization configuration of hybrid energy storage for wind farm frequency support[J]. Proceedings of the CSEE, 2024, 44(14): 5596-5607.
[11] 赵靖英, 乔珩埔, 姚帅亮, 等. 考虑储能SOC自恢复的风电波动平抑混合储能容量配置策略[J]. 电工技术学报, 2024, 39(16): 5206-5219.
ZHAO J Y, QIAO H P, YAO S L, et al.Hybrid energy storage system capacity configuration strategy for stabilizing wind power fluctuation considering SOC self-recovery[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5206-5219.
[12] 高晓芝, 王磊, 田晋, 等. 基于参数优化变分模态分解的混合储能功率分配策略[J]. 储能科学与技术, 2022,11(1): 147-155.
GAO X Z, WANG L, TIAN J, et al.Research on hybrid energy storage power distribution strategy based on param-eter optimization variational mode decomposition[J]. Energy storage science and technology, 2022, 11(1): 147-155.
[13] 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668.
SONG Y M, LIU Y J, JIN G, et al.Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy storage science and technology, 2024, 13(2): 652-668.
[14] 崔俊昊, 田桂珍, 刘广忱, 等. 独立运行直流微电网混合储能系统功率分配控制策略研究[J]. 电网与清洁能源, 2023, 39(4): 129-136.
CUI J H, TIAN G Z, LIU G C, et al.A study on the power distribution control strategy of hybrid energy storage system in the isolated DC microgrid[J]. Advances of power system & hydroelectric engineering, 2023, 39(4): 129-136.
[15] 王腾, 张新燕, 王亚东, 等. 基于二阶滤波的混合储能系统能量管理控制策略[J]. 太阳能学报, 2022, 43(11): 399-405.
WANG T, ZHANG X Y, WANG Y D, et al.Energy management control strategy of hybrid energy storage system based on second-order filtering[J]. Acta energiae solaris sinica, 2022, 43(11): 399-405.
[16] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3):1016-1029.
MA L, XIE L R, YE L, et al.Wind power fluctuation suppression strategy based on hybrid energy storage Bi-level programming model[J]. Power system technology, 2022, 46(3): 1016-1026.
[17] 张宇华, 李青松, 王丛, 等. 区域风光低频相关性互补与高频混合储能平抑的并网方法研究[J]. 中国电机工程学报, 2023, 43(4): 1492-1504.
ZHANG Y H, LI Q S, WANG C, et al.Grid-connected method of regional wind-solar low-frequency correlation complementation and high-frequency hybrid energy storage stabilization[J]. Proceedings of the Chinese Society of Electrical Engineering, 2023, 43(4): 1492-1503.

基金

内蒙古自治区科技重大专项(2020ZD0014); 国家自然科学基金(51867020)

PDF(3585 KB)

Accesses

Citation

Detail

段落导航
相关文章

/