深入探讨利用等离子增强化学气相沉积(PECVD)技术在制备N型高效隧穿氧化层钝化接触(TOPCon)太阳电池中的应用,着重分析隧穿氧化层与多晶硅层的关键工艺参数及其对电池钝化性能的影响。实验结果显示,隧穿氧化层的厚度对电池的钝化效果起到至关重要的作用。当氧化时间控制在105 s时钝化效果最佳,主要是因为此隧穿氧化层厚度能在载流子的隧穿概率与界面钝化效果之间实现最佳平衡。此外,退火温度也是钝化性能的关键影响因素,其最佳范围为915~930 ℃。高温退火不仅可促进磷掺杂的激活,还可减少界面缺陷,显著提高界面质量。多晶硅层的磷元素掺杂量也会影响钝化性能。随着磷掺杂量的增加,多晶硅层的场钝化效果增强,从而可提升整体的钝化性能。然而,过高的磷掺杂量可能会导致硅表面出现严重的俄歇复合现象,从而削弱钝化效果。通过精确控制隧穿氧化层的厚度和退火温度,可提升TOPCon电池的钝化效果,分析氧化时间及退火温度的影响,揭示各参数之间的复杂相互作用。最终,通过对Topcon电池关键工艺参数的深入模拟,揭示优化条件下的高效能表现,以期为工艺改进和实际应用提供科学依据与技术支持。
Abstract
This paper delves into the application of Plasma-Enhanced Chemical Vapor Deposition (PECVD) technology in the fabrication of high-efficiency N-type Tunnel Oxide Passivated Contact (TOPCon) solar cells, focusing on the key process parameters of the tunnel oxide layer and the polycrystalline silicon layer, as well as their impact on the passivation performance of the solar cells. Experimental results indicate that the thickness of the tunnel oxide layer plays a crucial role in passivation. When the oxidation time is controlled at 105 seconds, the passivation effect is optimal. This is mainly because this oxide thickness achieves an optimal balance between carrier tunneling probability and interface passivation effect. Furthermore, annealing temperature is also a key factor affecting passivation performance, with an optimal range of 915-930 ℃. High-temperature annealing not only promotes the activation of phosphorus doping but also reduces interface defects, significantly improving interface quality. The phosphorus doping level in the polycrystalline silicon layer also affects passivation performance. As the phosphorus doping increases, the field passivation effect of the polycrystalline silicon layer improves, thereby enhancing overall passivation performance. However, excessively high phosphorus doping may lead to severe Auger recombination on the silicon surface, weakening the passivation effect. This paper improves the passivation effect of TOPCon cells by precisely controlling the thickness of the tunneling oxide layer and annealing temperature. Additionally, it analyzes the influence of oxidation time and annealing temperature, revealing the complex interactions among various parameters. Ultimately, through in-depth simulation of the key process parameters of TOPCon cells, we revealed high efficiency under optimized conditions, providing scientific evidence and technical support for process improvement and practical applications.
关键词
太阳电池 /
晶体硅 /
化学气相沉积 /
N型高效隧穿氧化层钝化接触 /
隧穿层 /
退火温度
Key words
solar cells /
silicon /
PECVD /
TOPCon /
tunnel oxide layer /
annealing temperature
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ABERLE A G, ALTERMATT P P, HEISER G, et al.Limiting loss mechanisms in 23% efficient silicon solar cells[J]. Journal of applied physics, 1995, 77(7): 3491-3504.
[2] 陈红元, 陈涛, 俞健, 等. 整形激光掺杂制备PERC电池选择性发射极研究[J]. 太阳能学报, 2021, 42(2): 383-388.
CHEN H Y, CHEN T, YU J, et al.Study on doping preparing selective emitter of silicon PERC solar cell with shaped laser[J]. Acta energiae solaris sinica, 2021, 42(2): 383-388.
[3] ZHAO J H, WANG A H, GREEN M A.High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates[J]. Solar energy materials and solar cells, 2001, 65(1/2/3/4): 429-435.
[4] WEI H, ZENG Y H, ZHENG J M, et al.Unraveling the passivation mechanisms of c-Si/SiOx/poly-Si contacts[J]. Solar energy materials and solar cells, 2023, 250: 112047.
[5] 贾洁静, 党继东, 辛国军, 等. 多步扩散制备太阳电池pn结工艺的研究[J]. 太阳能学报, 2015, 36(1): 102-107.
JIA J J, DANG J D, XIN G J, et al.On preparing the pn junction of solar cell by means of multi-steps-diffusion[J]. Acta energiae solaris sinica, 2015, 36(1): 102-107.
[6] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274.
[7] RICHTER A, HERMLE M, GLUNZ S W.Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE journal of photovoltaics, 2013, 3(4): 1184-1191.
[8] GREEN M A, DUNLOP E D, YOSHITA M, et al.Solar cell efficiency tables (version 66)[J]. Progress in photovoltaics: research and applications, 2025, 33(7): 795-810.
[9] TRUONG T N, YAN D, NGUYEN C T, et al.Morphology, microstructure, and doping behaviour: a comparison between different deposition methods for poly-Si/SiOx passivating contacts[J]. Progress in photovoltaics: research and applications, 2021, 29(7): 857-868.
[10] STÖHR M, APROJANZ J, BRENDEL R, et al. Firing-stable PECVD SiOxNy/n-poly-Si surface passivation for silicon solar cells[J]. ACS applied energy materials, 2021, 4(5): 4646-4653.
[11] CHEN W H, LIU W Q, YU Y Y, et al.A study of activated phosphorus distribution within silicon substrate for polysilicon passivating contacts based on an in-line PVD system[J]. Solar energy, 2023, 259: 375-380.
[12] ZHOU J C, LV B W, LIANG H L, et al.Simulation and optimization of polysilicon thin film deposition in a 3000 mm tubular LPCVD reactor[J]. Solar energy, 2023, 253: 462-471.
[13] 刘欢, 由甲川, 赵雷, 等. 氢等离子体处理钝化层对高效晶硅异质结太阳电池性能的影响[J]. 太阳能学报, 2022, 43(7): 140-144.
LIU H, YOU J C, ZHAO L, et al.Effect of post-deposition hydrogen plasma treatment to passivation layer on performance of silicon heterojunction solar cell[J]. Acta energiae solaris sinica, 2022, 43(7): 140-144.
[14] KALE A S, NEMETH W, HARVEY S P, et al.Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells[J]. Solar energy materials and solar cells, 2018, 185: 270-276.
[15] 叶浩然, 何佳龙, 陈杨, 等. TOPCon太阳电池电子选择性接触研究[J]. 太阳能学报, 2024, 45(2): 475-479.
YE H R, HE J L, CHEN Y, et al.Research on electron selective contact of TOPCon solar cells[J]. Acta energiae solaris sinica, 2024, 45(2): 475-479.
[16] LI S J, HAN P D.Effects of high temperature annealing and laser irradiation on activation rate of phosphorus[J]. Journal of semiconductors, 2020, 41(12): 122701.
基金
国家自然科学基金(62025403; U23A20354); 浙江省“尖兵”“领雁”研发攻关计划(2024C01092)