凹腔结构对风力机翼型减阻性能影响研究

薛佳乐, 陈永艳, 宋力, 苏昕, 毕金龙

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 641-649.

PDF(4765 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4765 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 641-649. DOI: 10.19912/j.0254-0096.tynxb.2024-1180

凹腔结构对风力机翼型减阻性能影响研究

  • 薛佳乐1, 陈永艳1,2, 宋力1,2, 苏昕1, 毕金龙1
作者信息 +

INFLUENCE OF CAVITY STRUCTURE ON DRAG REDUCTION PERFORMANCE OF WIND TURBINE AIRFOIL

  • Xue Jiale1, Chen Yongyan1,2, Song Li1,2, Su Xin1, Bi Jinlong1
Author information +
文章历史 +

摘要

为探究不同凹腔结构对风力机翼型减阻性能影响研究,利用SST湍流模型对设置凹腔的NACA0012翼型进行数值模拟,根据Omega准则分析风力机在攻角13°时边界层轴向速度在法向方向的变化,并分析攻角增加时翼型壁面剪切力的变化和对黏性阻力影响的范围。研究发现,凹腔的起点设置在翼型75%cc为弦长)处,翼型表面边界层的气流抵抗逆压梯度能力增强,此外凹腔的结构呈现“椭月”状,可更好地与凹腔外部高速气流接触形成涡垫效应,从而降低壁面的黏性阻力,研究还发现在尖速比1.2、1.6和2.0时平均转矩系数分别提高3.88%、3.33和2.26%。

Abstract

In order to study the influence of different cavity structures on the drag reduction performance of wind turbine airfoil, the SST turbulence model was used to numerically simulate the NACA0012 airfoil with cavity, and the change of boundary layer axial velocity in the normal direction at 13° angle of attack was analyzed according to Omega criterion. The variation of the shear force on the airfoil wall and the range of influence on the viscous resistance with the increase of the angle of attack are analyzed. It is found that the starting point of the cavity is set at 75%c(chord length) of the airfoil, and the airflow resistance of the boundary layer on the surface of the airfoil is enhanced. In addition, the structure of the cavity presents an “crescent moon” shape, which can better contact the high-speed airflow outside the cavity to form a vortex cushion effect, thus reducing the viscous resistance of the wall. The study also found that the average torque coefficient increased by 3.88%, 3.33%, and 2.26% respectively at tip speed ratios of 1.2, 1.6, and 2.0.

关键词

垂直轴风力机 / 翼型优化 / 凹腔 / 减阻 / CFD / Omega准则

Key words

vertical axis wind turbine / airfoil optimization / cavity / drag reduction / CFD / Omega criterion

引用本文

导出引用
薛佳乐, 陈永艳, 宋力, 苏昕, 毕金龙. 凹腔结构对风力机翼型减阻性能影响研究[J]. 太阳能学报. 2025, 46(11): 641-649 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1180
Xue Jiale, Chen Yongyan, Song Li, Su Xin, Bi Jinlong. INFLUENCE OF CAVITY STRUCTURE ON DRAG REDUCTION PERFORMANCE OF WIND TURBINE AIRFOIL[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 641-649 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1180
中图分类号: TK83   

参考文献

[1] REZAEIHA A, MONTAZERI H, BLOCKEN B.Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters[J]. Energy conversion and management, 2018, 169: 45-77.
[2] ELKHOURY M, KIWATA T, AOUN E.Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch[J]. Journal of wind engineering and industrial aerodynamics, 2015, 139: 111-123.
[3] BELABES B, PARASCHIVOIU M.Numerical study of the effect of turbulence intensity on VAWT performance[J]. Energy, 2021, 233: 121139.
[4] 陈榴, 徐俊, 张瑞洁, 等. 主动Gurney襟翼提升VAWT动态气动性能的数值研究[J]. 太阳能学报, 2021, 42(8): 361-367.
CHEN L, XU J, ZHANG R J, et al.Numerical investigation of active gurney flaps to enhance vawt dynamic aerodynamic performance[J]. Acta energiae solaris sinica, 2021, 42(8): 361-367.
[5] 倪露露, 缪维跑, 李春, 等. 格尼襟翼垂直轴风力机风场研究[J]. 太阳能学报, 2022, 43(2): 365-372.
NI L L, MIAO W P, LI C, et al.Investigation of effect of gurney flap on performance of vertical axis wind turbine in array configurations[J]. Acta energiae solaris sinica, 2022, 43(2): 365-372.
[6] 李根, 缪维跑, 李春, 等. 主动式凹槽-襟翼对垂直轴风力机气动性能影响研究[J]. 热能动力工程, 2021, 36(1): 136-144.
LI G, MIAO W P, LI C, et al.Study on the influence of active dimple-flap on the aerodynamic performance of vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2021, 36(1): 136-144.
[7] CHEN L, XU J, DAI R.Numerical prediction of switching gurney flap effects on straight bladed VAWT power performance[J]. Journal of mechanical science and technology, 2020, 34(12): 4933-4940.
[8] LIU Q S, MIAO W P, YE Q, et al.Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine[J]. Renewable energy, 2022, 185: 1124-1138.
[9] 李根, 刘青松, 李春, 等. 基于正交试验凹槽-襟翼垂直轴风力机数值研究[J]. 太阳能学报, 2023, 44(5): 294-301.
LI G, LIU Q S, LI C, et al.Numerical study of vertical axis wind turbine with dimple-flaps based on orthogonal test[J]. Acta energiae solaris sinica, 2023, 44(5): 294-301.
[10] HASSAN S S U, JAVAID M T, RAUF U, et al. Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles[J]. Energy, 2023, 270: 126978.
[11] ZAMANI M, SANGTARASH A, JAVAD MAGHREBI M.Numerical study of porous media effect on the blade surface of vertical axis wind turbine for enhancement of aerodynamic performance[J]. Energy conversion and management, 2021, 245: 114598.
[12] 郭欣, 陈永艳, 田瑞, 等. 翼型型线改变的三叶片H型垂直轴风力机气动特性研究[J]. 可再生能源, 2022, 40(1): 73-78.
GUO X, CHEN Y Y, TIAN R, et al.Research on aerodynamic characteristics of a three-blade H-shaped vertical axis wind turbine with changing airfoil profile[J]. Renewable energy resources, 2022, 40(1): 73-78.
[13] JAVAID M T, SAJJAD U, SADDAM UL HASSAN S, et al. Power enhancement of vertical axis wind turbine using optimum trapped vortex cavity[J]. Energy, 2023, 278: 127808.
[14] LIU Y, LI P F, HE W, et al.Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104263.
[15] VUDDAGIRI A C A. Flow analysis of airfoil having different cavities on its suction surface[J]. SIAM journal on applied dynamical systems, 2017, 16(2): 67-77.
[16] SEO S H, HONG C H.Performance improvement of airfoils for wind blade with the groove[J]. International journal of green energy, 2016, 13(1): 34-39.
[17] LIU C Q, WANG Y Q, YANG Y, et al.New omega vortex identification method[J]. Science China physics, mechanics & astronomy, 2016, 59(8): 684711.

基金

内蒙古自治区自然科学基金(2023LHMS05056); 内蒙古自治区直属高校基本科研业务费项目(JY20230079)

PDF(4765 KB)

Accesses

Citation

Detail

段落导航
相关文章

/